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ABSTRACT

Rezoning is required when elements within a

Lagrangian based finite element mesh become distorted due

to large deformations and strains. Rezoning halts the

solution process to correct distorted elements which

cause inaccuracies and ill conditioning. The solution is

restarted after the remeshing and the remapping of the

element variables in the rezoning regions. To date the

rezoning process has remained an interactive process with

very little theory.

A method for self adaptive rezoning is delineated

based upon finite element modeling assumptions of

structural problems involving large deformations and

strains. Linear isoparametric quadrilateral elements

using selective reduced integration are examined.

Geometrical measures of an element are defined in

terms of aspect ratio, taper ratio, and skew angle. The

amount of distortion of an element is related to these

terms when compared to the same terms for an ideal

element. An algorithm is developed to examine the finite

element mesh, element by element, to quantify the

geometrical relationships which are needed to quantify

the amount of distortion.
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A key ingredient for self adaptive rezoning is the

determination of rezoning indicators which provide I
information to determine when and how to rezone. Results 3
of eigenvalue testing quadrilateral elements is used to

derive the rezoning indicators. The process is I
theoretically and mathematically sound, but must be

derived empirically due to the nonlinear nature of the I
stiffness matrix. A ratio of the strain energy density

of an ideal to a distorted element is used in determining

the rezoning indicators. 3
A remeshing technique is developed which requires

user intervention and is based upon information 3
determined by the rezoning indicators. An automatic

remapping scheme is used to remap the element variables i
from the old mesh to the new rezoned mesh. 3

Two example problems are examined. An upsetting

cylindrical billet simulates a quasi static metal forming

process. An impacting cylindrical rod simulates a

dynamic impact process. Both problems involve large U
deformations and strains. Results are compared to strain 3
jump values, gradients of equivalent plastic strain,

Mises stress, and strain energy density ratio, changes in 3
the time step and increment sizes, and to similar cases

from the literature. I

I
I
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CHAPTER 1

INTRODUCTION

1.1 An Overview

The overview is included as an aid to following the

flow of the subject material presented in this thesis.

There are three principal objectives of this thesis. The

first objective was to develop rezoning indicators which

allow for automatic detection of distorted elements and

provide information required to create an optimized new

mesh. The second objective was to develop a method for

self adaptive rezoning which utilizes the determined

rezoning indicators. The self adaptive rezoning method

is used to overcome the limitations caused by distorted

elements in a Lagrangian based mesh due to large strains

and deformations. The third objective was to validate

the first two objectives.

The information in Chapter 1 provides background

information of the finite element method which applies to

the rezoning method. This information is useful in

determining why and how rezoning fits into the finite

element method. The important considerations are the

element formulations and the mesh reference frame used in

. ..... .. 1
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conjunction with large deformations and strains. I
Chapter 2 describes the details of self adaptive

rezoning in the finite element method. The theory behind

the method is outlined along with some of the techniques 3
used in development of self adaptive rezoning schemes. A

general method of rezoning is explained which is similar

to many of the methods cited in the literature.

An integral part of a self adaptive rezoner is the i

means to examine a finite element mesh at each time step

or increment in order to determine if any distorted

elements are present. A method was developed that 3
describes an element's geometry in terms of aspect ratio,

taper ratio, and skew angle, and this is compared to a i
distortion measure. This is described in Chapter 3. An 3
ideal element shape was used as a reference.

A necessary and very important part of a self 3
adaptive rezoner is the means to determine when an

element is distorted to the point that the errors in the I
solution tend to grow more rapidly and cause havoc with 3
the solution process. Chapter 4 outlines the method

developed by the investigator to derive rezoning 3
indicators. Rezoning indicators are the geometrical

measures of an element that determine when an element is i
too distorted for use and rezoning must take place. The

results of an eigenvalue problem solution of the

element's stiffness matrix, incorporated into a strain 5
2 i

i



energy formulation, provides a valid method to derive the

rezoning indicators.

Chapter 5 describes the remeshing procedure required

for rezoning. In the rezoning process, the solution is

halted and a new optimized mesh is created in the region

of the distorted elements. This eliminates the distorted

elements which create the inaccuracies and ill

conditioning in the solution process.

Remapping of element variables from an old mesh to

the new mesh that was created in the remeshing process

(Chapter 5) is just as vital to the rezoning process as

the remeshing itself. Interpolation of the element

variables is required in order to restart the solution

process.

Two test problems were chosen to test and validate

the self adaptive rezoning process and the rezoning

indicators derived from eigenvalue testing.

Finally, the results are examined and observations

made regarding the rezoning indicators and the procedure

of self adaptive rezoning developed by the investigator.

A comparison between the nonrezoning and rezoning of the

results of the test problems is used for verification of

the usefulness of using the self adaptive rezoning

method. Recommendations for improvement and further

validation are given.

3



I

1.2 Basics of the Finite Element Method I

An understanding of the finite element analysis pro-

cess is required in order to conceptualize the purpose of

rezoning found in some finite element analyses. A brief 3
overview of the finite element analysis process will be

examined.

In a finite element analysis a continuum is 3
discretized into a series of elements which are

interconnected at node points. This is done in such a I
fashion to properly describe the domain of the problem

and to limit the infinite number of unknowns across the

continuum by selecting a number of descriptive discreet 3
points. A variety of element types exist to describe an

enormous variety of problems. These problems can be 3
found in such fields as solid mechanics, fluid dynamics,

electromagnetics, acoustics, and many other fields which 1
are beginning to use the analytical power of the finite 3
element method.

Most finite elements are formulated to simulate the 3
type of behavior representative of the problem and its

geometry. The mathematical formulation of the element I
tries to simulate the behavior of real materials under 3
given loading conditions. The nodes and integration

points serve as convenient points within the elements to 3
obtain the values of desired variables. Since only solid

I
4 n

I



mechanic problems are examined in this investigation

these desired variables are such quantities as

displacement, strain and stress.

The finite element method is advantageous in that a

simple solution can be found for each individual element.

A summation over all the elements is then used to derive

the system of equations for the entire problem. In

finite element analysis the element equations are formed

using a variety of approaches. One of four general

approaches can be used. The direct, variational,

weighted residuals, or the energy balance approach. Once

the system of equations are formed, by one of the

mentioned approaches, the unknown nodal displacements are

solved. The discrete displacement values at the nodes

can then be interpolated to adequately describe the

displacement field within each element. This process is

usually achieved by using shape functions in the

formulation of the element. The shape functions provide

a mathematical means to interpolate between the solved

displacements at the node points while representing an

approximation to the true behavior of the continuum.

1.3 Strain Measures

An important feature in the finite element analysis

of solid mechanics is the determination of strains.

Strains can be derived from the finite element
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displacement fields. This assumes that a proper measure

of deformation was implemented into the equations of the

analysis. One form of deformation that is commonly used

is that of the stretch ratio. The stretch ratio is

defined as the ratio of the current infinitesimal gage

length of a particle to its initial gage length. This 5
can serve as an adequate strain measure by itself. Many

strain measures have been derived from the stretch ratio.

Most assume that a measure of strain is a function of the 3
stretch ratio. The function of stretch ratio that is

assumed is dependent upon the application of the strain

measure. Since strain is a link between the kinematic

and constitutive theories one must base a derived strain

measure on the ease with which the strain can be computed

from the displacements and the appropriateness of the

strain measure to a given constitutive law.

Nominal strain (Biot's strain) is a strain measure

which is a function of the stretch ratio. This strain I
measure is most familiar to engineers who use results of

uniaxially loaded test specimens. This is commonly used

in small displacement, small strain problems. A second 3
strain measure is that of logarithmic strain. This

strain measure is commonly used in metal plasticity 3
problems because it closely approximates the strain

measured in ,sion, compression and torsion tests, where

"true" stress (force per current area) is measured. This 5
6
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is used with both small and large deformation and strain

approximations. Finally, a third strain measure is that

of Green's strain. This strain measure is used in cases

of large motions but small strains. Proper choice of a

strain measure must coincide with the problem to be

solved whether it be for large deformations and finite

strains, large deflections but small strains or simply

small strains with small displacements.

1.4 Stress Measures

The stresses are a key ingredient to be derived from

the finite element analysis. From the strains the

stresses can be determined via the constitutive laws.

For a given strain measure one can obtain a work

conjugate stress measure (the product of stress and

strain rate defines the work per current volume). The

Cauchy (true) stress is one of the most practical stress

measures in the finite element field because it measures

the true stress at the current condition. This stress

measure is practical for situations which model both

large and small deformations and strains.

1,5 Constitutive Laws and Material Models

Constitutive laws are generally derived from tests

which determine the material's behavior under various

conditions. Many material models exist which try to

7



approximate material behaviors over a variety of I
conditions. Most commonly these model describe elastic

and or plastic behavior. Included are such thing as

yield criteria, hardening rules, flow rules, modulus of 3
elasticity, bulk modulus, and any other pertinent

parameters. Many of these models are provided in rate

form so that history dependence of the response can be

modeled. U
The stresses can be determined from the strains by 3

use of the constitutive laws which are formulated on a

given material's properties and behavior. The finite i

element mesh variables provide the estimate to the

kinematic solution which are in turn passed on to the I
constitutive laws to derive a corresponding material 3
specific stress at a given point known as an integration

point. Integration points are points that lie within the 3
element and provide an optimum position for the

computation of such state variables as the stresses. I

1.6 Types of Applications i

Finite element analysis problems are in general 3
divided into either a static or dynamic type of problem

which can be either linear or nonlinear. The majority of 3
work done to date in the finite element field has

extensively covered the linear static and dynamic U
applications. There still remains much to be done for 3

8 I
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the improvement to solution techniques used in nonlinear

static, quasi static and dynamic applications.

An application can become nonlinear in one of three

ways. The material can exhibit nonlinear behavior as

seen in plasticity models with large strains. The

geometry can be nonlinear with large displacements and

rotations. Finally, the loading conditions and kinematic

constraints can be applied in a nonlinear fashion.

Dynamic applications deal with responses of the

model over a period of time where the response changes

sufficiently over that time period. The inertial

properties tend to influence, to one degree or another,

the outcome of the solution. The rate of the dynamics

involved also plays an important part in the finite

element modeling process. The nature of the application

basically dictates how the finite element analysis is

formulated.

1.7 Finite Element Mesh Reference Frame

An important factor in the finite element

formulation is the reference frame of the finite element

mesh to a given set of coordinates. In practice there

has generally been two ways to reference a given finite

element mesh to a coordinate system. If the nodes and

elements remain coincident with a given spatial coordi-

nate system, where each element and their nodes remain

9
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fixed in space, and one lets the material points migrate U
from one element to the next, then this mesh is called a

Euler mesh. Boundary conditions and definitions are

almost impossible with this type of mesh. Generally 3
these meshes handle large interior deformation problems

such as might be found in fluid dynamic problems. They 3
are also used for problems where there is a significantly

high frequency content in the transient response. The I
solution techniques usually require many small time steps 3
for dynamic problems but the equations are solved

explicitly. This type of mesh is generally used in fluid 3
dynamic problems.

In the second mesh type the nodes of the elements U
remain coincident with the same material point and the 3
elements contain the same domain of material through out

the deformation process. This is called a Lagrangian 3
mesh. The boundary of the domain is well defined

throughout the solution process in this mesh reference i
frame. Nodes and elements will always be able to

describe the boundary, and therefore the motion of the

boundary causes no problems. Lagrangian meshes, solved 3
implicitly, allows one to use larger time steps in

dynamic problems, and larger increments in static or 3
quasi static problems. Implicit finite element codes are

generally used for metal forming processes and structural

analysis and design. Generally these involve static, 5
10 I
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quasi static, and dynamic problems where there is a low

frequency content to the response. Time step sizes can

be up to three orders of magnitude greater than those

used for Euler meshes.

Lagrangian meshes become disadvantageous when large

distortions occur in the elements. The distorted

elements cause inaccuracies and ill conditioning of the

finite element solution. A solution to this problem has

been to rezone the mesh. Rezoning, simply put, is the

creation of a new acceptable mesh in the regions of poor

element behavior due to distortion of the elements. A

remapping of the old mesh variables to the new mesh is

included in the rezoning process. The rezoning process

depends upon many of the factors previously described

concerning the finite element formulation process. The

key factor for using a self adaptive rezoner is to allow

one to use Lagrangian based finite element meshes and

overcome the difficulties encountered with distorted

elements due to large deformations and strains.

11



CHAPTER 2

ADAPTIVE REZONING - THEORY, ASSUMPTIONS, AND APPROACH I
2.1 Theory and Method of Adaptive Rezoning i

What is adaptive mesh rezoning? When and why is it 3
used? What adaptive strategy does one use? How does one

indicate when and how much rezoning should take place? I
What extent of the mesh should be rezoned? What will 3
serve as proper indicators to initiate rezoning and to

control how much and where it is done? Which meshing 3
technique will best serve the purpose? How does one

integrate rezoning into the solution process as well as i
manipulate the data structure containing the nodes and

elements? How does one best transfer the nodal and

element values from the old mesh to the new one? These

questions are answered by examining the theory and

assumptions upon which adaptive mesh rezoning is built.

A method is outlined for a specific approach to

developing a self adaptive rezoning algorithm.

The need for self adaptive rezoning stems from the

use of Lagrangian based finite element methods and the

desire for automation of the process. In finite element

solutions which utilize Lagrangian meshes for large

12
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deformation problems, the solution process tends to loose

accuracy as the e±ements become distorted. This causes

failure in convergence and inaccurate results in the im-

plicit calculations and solution. Rezoning has been an

answer to these problems. In many applications,

especially those related to metal forming (implicit) and

shock wave propagation in complex structures (explicit),

the need to rezone the mesh becomes unavoidable. Due to

the nature of some of these applications, the use of

better elements or solution algorithms will not alleviate

the need to rezone because of the amount of distortion in

the elements. Rezoning should always be used for those

applications where any part of the mesh becomes grossly

distorted during the solution process.

2.1.1 Theoretical Background to Adaptive Rezoning

A brief overview of finite element error estimation

and accuracy improvement is in order to better understand

the theory behind adaptive mesh rezoning. In the

literature there exists many suggestions and very little

theory on how one can use error estimates to examine and

improve the results and accuracy of a finite element

solution [1-8]. Most of the work on improvement of mesh

accuracies goes back to the field of self adaptive error

analysis and improvement techniques known as a posteriori

error estimation. This method has mainly been used with

13
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static cases and the theory has only been proven for one I
dimensional cases. Practically no theory exists for

higher order problems as well as any nonlinear problems.

The main purpose of this technique has been to optimize 3
the finite element mesh, generally for linear static

problems, so that the inaccuracies caused by the mesh are 3
minimized. An iterative technique is utilized to

converge on an appropriately accurate solution via mesh N
refinement. 3

Typically a posteriori error estimators would be

used in conjunction with either the h-type or p-type mesh 3
refinement techniques to improve upon the finite element

mesh. The h-type of mesh refinement involves the i
subdivision of the element domain into more and smaller 3
elements. The p-type mesh refinement involves increasing

the order of the element. Both techniques have proven 3
effective in improving the finite element mesh to better

the solution accuracy. Combinations of the two mesh i
refinement techniques have also been utilized. 3

The a posteriori error estimation procedure for

static linear cases starts by running the solution 3
process on an initial mesh. After the solution process

ends, an error would be estimated, by a variety of means I
such as the method of residuals. This estimate would

then provide a measure of the "goodness" of the mesh.

The h and or p-type refinement process would then be 3
14 I
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applied to refine the mesh by the amount indicated by the

obtained error estimator. The solution would then be run

again on the improved mesh. This process repeats itself

until a limit on the convergence towards a more accurate

solution via mesh refinement is achieved. This is an

iterative optimization technique.

Adaptive mesh rezoning uses many of the principles

of the a posteriori error estimation technique, however,

there are a number of differences. First, rezoning is

typically used in large deformation and quasi static or

dynamic type problems. Second, it is assumed that the

initial mesh is appropriate and that as one marches

through time or the iteration process, it is the

prevention and correction of grossly distorted elements

that becomes the objective. During each correction of

the mesh one attempts to obtain an optimum mesh for the

newly rezoned region to reduce the amount of future

rezoning. Most of the current rezoning techniques are

not self adaptive and user intervention is required.

There exists no indicators as to when and how to rezone.

Generally the user of a finite element program which

contains a rezoning algorithm, must stop the solution,

decide if rezoning is required, and where and how the

mesh should be rezoned. A good understanding of the

elements used, the nature of the problem, and experience

of when elements are distorted beyond use is required by

15



the user for these interactive rezoning processes. The

need for a self adaptive (automatic) rezoner becomes

obvious.

2.1.2 General Method of Rezoning

The first step in the adaptive rezoning process is

to be able to determine the geometry of each of the

finite elements in the mesh and provide some type of

measures that define the current geometrical shape of

each element. These measures would act as comparative

criteria against some distortion indicators in order to

determine if an element has undergone an excessive amount

of distortion. Typically one would compare a

relationship between an element's current geometrical

configuration to that of an ideally shaped element. This

process provides the means to examine the geometry of the

mesh and define geometrical measures which can flag those

elements which have been distorted beyond use.

The actual determination of when an element is

distorted to the extent as to cause inaccuracies in the

solution process can be achieved by the generation of

distortion indicators. These indicators would be used in

conjunction with a mesh geometry checking process. An

elements current geometrical configuration or measure

would be compared to distortion indicators. The

distortion indicators would be given in the same terms as

16



the element's geometrical relationships. When an

element's current geometrical shape relationship values

exceed the distortion rezoning indicator values, then the

element is flagged for rezoning. The amount of rezoning

to be done to a finite element mesh would depend upon the

number of elements flagged for being distorted as well as

those elements that are near or approaching the

distortion limit criteria. Proceeding several time steps

or increments further into the solution after the first

distortion limit criteria has been met would allow the

determination of those elements that are near or

approaching the distortion limit criteria. These

elements would in most cases be rezoned (remeshed) along

with the elements that reached the distortion limits.

Examining the distortion pattern at latter time steps or

increments would also allow the determination of how the

rezoning (remeshing) should be accomplished.

Typically the indicators for when and where the

rezoning process should take place have been quantities

closely related to the solution variables in the finite

element solution process. For example, one might measure

the amplitude and gradient of such quantities as strain,

stress, displacement and strain energy density. Noting

areas in the mesh of extreme values or jumps in values,

as well as areas of high gradient values near or at

distorted elements, have served as an indicators for
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rezoning these regions. The rate form of quantities, I
such as strain rate, would also be of interest as

rezoning indicators. Strain rate versus a quantity such

as the plasticity index might provide a means to 3
determine when the solution has exceeded the strain rate

capacity of the material. To date there has been no set 3
rules or paths to take as to which type of rezoning

indicator to use. I
The a posteriori error estimators are used in a self 3

adaptive manner where the estimators are used in the

reformulation of the same mesh to arrive at an optimized 3
mesh layout. This process proceeds automatically without

user input. For rezoning to be adaptive like the I
approach taken with the a posteriori error estimators, 3
the rezoning indicators and the process must be able to

specify when and where the rezoning is to be done, and by 3
how much and in what manner this is to be accomplished.

This is a key ingredient. The few rezoners that exist i
today rely heavily on user input to perform this task. 3

The determination of the regions to be rezoned is in

general not too much of a problem given some appropriate 3
rezoning indicators and following the procedure

previously described. Usually the rezoning is restricted 3
to a local region of the mesh. The actual rezoning must

extend out past the elements that were flagged for

rezoning and those deemed near or approaching the 3
18 I
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distortion limit criteria. According to Saint Venants

principle the effect of a distorted element to the

surrounding elements dies out the further away one is

from that element [9]. Thus, if the distorted element is

in a region of little interest one might not even bother

to fix it since its effect is localized. For rezoning

purposes, the amount of the mesh away from the distorted

elements and those elements that are near or approaching

distortion, that must be included in the region to be

rezoned is a topic of debate. A minimum good rule of

thumb in the remeshing process is to include at least

those element which surround the distorted elements and

those near or approaching distortion.

Once it has been determined that rezoning is

required and the region for rezoning has been flagged,

then that region must be remeshed. The nodes and

elements of the new mesh must be of an acceptable nature.

Rezoning is of no benefit if the newly created mesh is no

better off than the previous mesh. Further more, one is

interested in remeshing to an extent that the region will

remain valid (no rezoning required) for at least a number

of time steps or increments. This implies that the new

mesh or remesh is to be optimized in some fashion in

accordance with the pattern of the future distortions in

the mesh as well as those elements flagged by the

rezoning indicators. The boundaries of the mesh must
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also remain the same. The remeshing can either reshape i
the existing elements to a more acceptable element shape,

or refine the mesh in the given area with acceptable

smaller elements. A combination of these two is most

likely to occur.

Once the new mesh is created the element variables

from the old mesh must be mapped over to the new mesh.

The manner in which this procedure is performed is I
important. If the rezoning process and indicators are

precise in determining when and how rezoning should take

place, and the remeshing part of rezoning is optimal, yet

the remapping of the element variables is shoddy or

erroneous, the effort is wasted. Most remapping i
techniques use some type of interpolation or weighted 3
parameters based on the positions of the old mesh to that

of the new mesh. It should be noted that the old mesh 3
means the mesh prior to the solution which was flagged

for rezoning.

Once the rezoning process is complete one usually

checks the element variables for discontinuities. If

discontinuities in the variables are present and of

sufficient size then this serves as a final rezoning

check. Under such conditions rezoning either occurred I
too late in the process or the mesh during the rezoning

was not sufficiently refined. There may also exist the

chance that the remapping of the variables was incorrect.

20
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i If this is encountered then the rezoning process can be

repeated or even stepped back. Another option is to

decrease the time step or increment size. If the

discontinuities are relatively small then the solution

can proceed until the next rezoning process is flagged.

i Several examples from the literature cite similar

rezoning processes which follow the general method of

rezoning that was developed in this section [10-22].

i 2.2 Assumptions for Adaptive Rezoning Problems

The adaptive rezoning process could be implemented

into finite element codes in various ways. The adaptive

rezoning process can be focused to be applicable to

i certain types of applications under certain conditions

and assumptions. An approach similar to the description

in section 2.1.2 for the rezoning process will be

formulated based upon a given set of conditions and

I assumptions. These conditions and assumptions help to

narrow the applications of rezoning to those of interest.

2.2.1 Types of Applications to be Studied

Nonlinear quasi static and dynamic problems of large

deformations, large strains, and for some problems high

strain rates are the main applications which require the

rezoning process. Specifically such problems would

entail impact problems at high velocities, metal forming

I
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processes, and large deformation problems in general. A I
large variety of these type of problems can be modeled

using two dimensional elements. The focus of this

investigation will be on axisymmetric, plane strain, and 3
plane stress elements undergoing large deformations and

strains. This process, however, could easily be extended

to other types of elements and three dimensional cases.

2.2.2 Finite Element Solution Technique

The applications of interest are either dynamic or I
quasi static. In general they will always be nonlinear.

For such problems a direct integration technique is used

in the solution process. A standard implicit time 3
integration operator which would be a slight modification

of the trapezoidal rule called the Hilber-Hughes-Taylor 3
operator is used. This implicit time operator solves the

nonlinear dynamic equilibrium equations at each time step

and does so iteratively by Newton's method. An automatic

time incrementation scheme is used which adjusts the time

increment after such events as a sudden impact. This of 3
course, assumes the use of a Lagrangian based mesh. This

solution technique is used in ABAQUS' solver algorithm. i

2.2.3 Elastic-Plastic Material Modeling I
Most metals are considered to behave in a ductile

fashion and exhibit relatively small amounts of elastic

deformation in comparison to the amount of plastic or i
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inelastic deformation which they can achieve before

failure. This behavior can be approximated or modeled by

the elastic-plastic models common to many finite element

codes. Finite element models of elastic and inelastic

behavior of metals are therefore considered to be valid

assumptions for adaptive rezoning. The inelastic

response is simulated with a plasticity model. In

plasticity theory the elasticity part of the model is not

effected by the inelastic deformation. The elasticity

theory assumed is the one standard to most text books.

The logarithmic strain measure is used since it is

the measure commonly used in metai plasticity problems.

This is appropriate for cases where the elastic part of

the strain in a elastic-plastic analyses can be assumed

to be very small. Many structural metals typically have

their elastic modulus two to three orders of magnitude

larger than the yield stress, and thus elastic

deflections are comparatively small. This can be used to

advantage in that the inelastic and elastic responses can

be separated into the deformation of recoverable

(elastic) and non recoverable (inelastic) parts. An

additive relationship between the strain rates is

utilized. This is the classical strain rate

decomposition of plasticity theory. The rate of

deformation will be used as the strain rate measure.

Total strain is defined as the integral of the rate of
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deformation in large displacement analysis. This class i
of problems therefore is based on finite strain

formulation.

The inelastic (plastic) response is assumed to be

fully incompressible in metals undergoing large plastic

flow. When the material is flowing plastically the

inelastic part of the deformation is defined by a flow

rule. A single flow potential is assumed. The I
plasticity model uses isotropic hardening. Increases in

strain rates typically cause an increase in the yield

stress of the material. This is modeled since high

strain rates are typical for the class of problems being

considered. Metal plasticity models use the Mises stress I
potential for isotropic metal behavior. They depend only

on the deviatoric stress so that the plastic part of the

response is incompressible. True or Cauchy stress and

logarithmic strain will generally be the element

variables sought besides the displacement. i

2.2.4 Element Selection and Conditions

The emphasis is focused on two dimensional first

order isoparametric quadrilateral elements using i
selective reduced integration. These elements will be

either plane strain, plane stress, or axisymmetric

elements. The elements are first order or linear in

interpolation with only four nodes, one at each of the

i
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I corners. This type of element has been chosen for the

applications of interest, that being large deformations

and strains leading to an incompressible material

response. Note that the choice of elements could be

extended to higher order elements without too much diffi-

culty. The sides of the elements will be assumed to

remain straight. A lump mass versus consistent mass

matrix is used in the finite element models. Using

lumped mass is generally easier and more appropriate with

dynamic problems. The elements are formulated for finite

strains and large displacements. Finite element

distortion is most likely element type sensitive,

therefore restrictions on the choice of element type aids

in focusing the study on rezoning.

In problems where plastic flow ends up dominating

the response, and the material behavior is near or fully

incompressible, as seen in such cases as metal forming

problems. The element choice and the integration scheme

of the element's stiffness matrix is important. The

elements must accommodate the incompressible flow

assumption in the plasticity theory. Usually for these

cases reduced integration elements are utilized.

Occasionally one might use hybrid type elements. Reduced

integration, however, can lead to singular or hourglass

modes. These modes can grow in an unbounded fashion if

uncontrolled. Singular or hourglass modes cause
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irregularities and ill conditioning in the solution

process. Fully integrated first order continuum

elements, however, can be used with selective reduced

integration, where just the volumetric strain is

calculated at the centroid (reduced integration point) of

the element instead at other integration points. In

selective reduced integration the order of integration is

reduced for selected terms in the fully integrated

element like the volumetric strain used in this case.

This helps in the prevention of mesh locking which would

normally occur in fully integrated elements when the

response is incompressible. The volumetric strain is

then extrapolated to the four integration points in the

two by two Gauss quadrature integration scheme. First

order elements with selected reduced integration are

therefore suitable for the applications of interest in

this investigation [17, 18, 23].

2.3 Adaptive Rezoning Approach

Given the basis or the need for adaptive rezoning of

finite element meshes, and provided with a specific class

of problems, one can focus in on determining an approach

to the rezoning method which will be most effective.

This provides a means to specifically delineate the

method used for adaptive rezoning of large deformation

finite element problems.
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First, one must inspect the finite element mesh for

distorted elements. The geometrical measures of

quadrilateral element shapes can be classified as aspect

ratio, taper ratio, skew angle, triangular

quadrilaterals, and inverted elements. These geometrical

values must be examined for each element at each step in

the solution. See Section 3.5 for details.

A rezoning indicator is used to determine if an

element is distorted or approaching the point of being

distorted. The rezoning indicators are given in terms of

the same measures used in defining the geometry of the

elements. The rezoning indicators therefore become a

comparative criteria with the geometrical measures.

Eigenvalue testing serves as an excellent means to derive

rezoning indicators. The examination of large magnitudes

or jumps in magnitudes of displacement, strain, stress

and strain energy density, as well as steep gradients of

these values, in the regions of distorted elements,

permits the confirmation of the rezoning indicators

derived from eigenvalue tests.

The rezoning indicators derived from eigenvalue

tests are formulated by comparing ratios of strain energy

density of distorted element shapes to an ideally shaped

element under controlled conditions. The formulation of

the strain energy density values is based on the

eigenvectors and eigenvalues derived from an eigenvalue
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test of the element's stiffness matrix. Chapter 4 I
provides more specific details on how these rezoning

indicators are formulated.

The important point to realize is that the rezoning

indicators act as the focal point in a self adaptive

rezoning process. The element distortion limits set by

the rezoning indicators permit the flagging of distorted

elements as well as allowing the examination of the mesh

to determine which elements in the future increments or

time steps will reach the distortion limits set by the

rezoning indicator criteria. This information is

utilized in the remeshing phase of rezoning.

A new finite element mesh is generated based on the I
information obtained when examining the old mesh and

comparing its geometrical relationships to the rezoning

indicators. The new mesh formulation is based on the

previous, present, and future deformation patterns

exhibited by the finite element mesh. The knowledge of I
which elements are being distorted throughout the I
solution process, as well as the pattern and type of

distortion, allows one to reshape the mesh anticipating

and correcting for the distortions.

With the insight provided by the rezoning indicators I
as to when the distortions occur throughout the process,

a new mesh at a given increment or time step can be

optimized to reduce the number of future rezonings.
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Caution should be applied so as not to loose valuable

information obtained in the remeshing. For example, an

area of refined element size should remain refined during

the remeshing if the refined region was put there to

achieve more accuracy in the solution, such as stress

concentration points. Such a technique is difficult to

incorporate into an self adaptive rezoning algorithm.

Expert type systems would be required to effectively

achieve this task. In addition, initial user input would

be required to define the desired parameters of the

problem. In this investigation interactive user input

was utilized to achieve the desired remeshings of the

rezoning process. The remeshing, however, was based on

the use of the rezoning indicator procedure just

described with the aid of various existing mapping

techniques.

The final step is to remap the element variables of

the old mesh onto the newly created mesh. This is

usually done by an interpolation scheme. ABAQUS a finite

element code was used to perform the remapping process.

The code contains an automatic remapping algorithm. This

allowed for an efficient remapping of all the solution

variables. The remapping itself can also serve as a

rezoning indicator. Chapter 7 provides more details on

the remapping of solution variables.

This entire process is repeated at any time step or
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increment during the solution process when the rezoning I
indicators flag elements of the mesh for rezoning.

Optimizing each step of the process will help to reduce

the number of rezonings required. This is important

since each rezoning adds additional computational effort

to the solution process and hence added cost and time to 3
obtain the solution.

2.4 Implementation of a Finite Element Code for Rezoning I
There are many finite element codes which are

adequate as a finite element solver that can not only

solve large deformation problems, but can also be used to

implement an adaptive rezoning algorithm. Two finite I
element codes which fit this description were examined.

These codes are NIKE2D and ABAQUS.

NIKE2D is an implicit finite deformation, large

strain finite element code for static, quasi static, and

dynamic analysis of two dimensional structural I
calculation problems. Plane stress, plane strain and

axisymmetric problems can be solved. NIKE2D has a built

in interactive rezoning algorithm. It is also supplied

with a variety of material or constitutive models which

cover the desired range of problems. NIKE2D uses four I
node quadrilateral elements with lumped mass [24].

Research by this investigator found NIKE2D to be lacking

in documentation, user friendliness, and the capability
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to interface it to an adaptive rezoning algorithm. For

these reasons NIKE2D was dropped as a candidate as a

finite element code to be interfaced to the adaptive

rezoner.

ABAQUS is an implicit Lagrangian finite element

code. It is suited for all of the conditions and

assumptions such as proper material models, as well as

finite strain and large deformation capabilities [17,

18]. It contains many if not more features than those of

the NIKE2D code. ABAQUS is setup to allow the eigenvalue

testing of elements with only a simple manipulation of

the mass matrices. This allows one to use the code to

obtain the required data to derive the rezoning

indicators. ABAQUS also allows one to stop the solution

process and restart it again at a desired time step or

increment. This is a typical restart procedure. This

allows one to integrate a rezoning algorithm at this

point. ABAQUS does contain a rezoning algorithm but it

is strictly a user specified procedure. Various output

procedures allow access to the element and nodal data

bases for changes to be made during rezoning. ABAQUS'

rezoning algorithm has a built in interpolation algorithm

designed specifically to remap the nodal and element

variables from the old mesh to the new mesh. This can be

incorporated to eliminate the need to provide for this

procedure in the rezoning algorithm.
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The use of the ABAQUS code allows for a semi-self I
adaptive rezoning procedure. It is semi-self adaptive

due to the fact that user intervention is still required

to perform the "self adaptive" rezoning process. This

limitation is due to the fact that direct implementation

of the rezoning algorithm and its components into the 3
ABAQUS code was not permissible.

I

I
I
I
I
I
I
I
I
I
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CHAPTER 3

FINITE ELEMENT MESH INSPECTION

3.1 Introduction

The first item required for a finite element rezoner

is an algorithm that examines the finite element mesh at

each time step or increment. This algorithm determines

all required geometrical relationships within each

element of the mesh. Typically for quadrilateral

elements these are aspect ratio, taper ratio, skew angle,

triangular quadrilaterals, and inverted quadrilaterals.

Triangular and inverted quadrilaterals can be classified

as subsets of the skew angle. The discussion here is

limited to quadrilateral elements, however, it could as

easily apply to other type of elements such as the three

dimensional brick elements. The geometrical measures are

compared to the same type of measures for an idealized

element. An idealized element is defined as an element

that provides an optimum value for each of the

geometrical measures of its shape. Refer to Section 3.3

for the definition of an ideal element.

The geometry inspection of the elements of the mesh

is an essential key in the rezoning process. The fact is

33



I

that all rezoning indicators will eventually relate back I
to the geometry of the elements and all changes to the

mesh will be related to the physical geometry of the

mesh. A robust method of element geometry inspection is

therefore required.

3.2 Focus on Quadrilateral Elements 1
This investigation focuses on the use of i

quadrilateral elements in finite element models and in 3
the rezoning process. The procedure to inspect the

geometry of other types of elements would be similar in i

nature. Many applications of large deformation finite

element codes which require rezoning are modeled with I
quadrilateral elements either being plane strain, plane i

stress, or axisymmetric elements. Restriction to these

elements provides for a concise exercise in the

development of a rezoner and yet is applicable to a wide

range of problems which are of interest. I
Each element is isoparametric and limited to four

nodes. Each element uses first order or linear

interpolation. Lumped mass is assumed. This classifi- 3
cation of elements greatly simplifies the procedure in

developing an adaptive rezoner. Procedures used to i
examine the geometry of two dimensional first order

isoparametric four node quadrilateral elements can be

extended to other types and orders of elements. The
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I
restrictions placed on the element choice is in agreement

with statements from the literature which imply that such

elements should be used for applications that involve

large deformation and strain [17, 18, 23, 25].

3.3 Ideal Geometry of a Quadrilateral Element

In developing geometrical measures for quadrilateral

elements one must have a frame of reference or some type

of idealized geometry for comparison. A reference to an

ideally shaped element would provide the most logical

approach. If such a reference is made, then all

distortions of a quadrilateral element can be compared to

this ideal element to gain a quantitative as well a

qualitative feel for the amount of distortion.

It has been documented that elements perform best if

their shape is compact and regular [26-28]. Elements

tend to loose accuracy as the aspect ratio increases, the

corner angles become markedly different from one another,

sides become curved, and if side nodes exist, when their

positions become unequally spaced.

Ideally one would want a quadrilateral element with

the aspect ratio near unity, the corner angles near

ninety degrees, the side nodes (if they are used) at the

element mid sides, straight sides or edges, and no great

size differences between adjacent elements. The

definition of an ideally shaped element would therefore
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be square in shape, of unit dimension along each edge,

corner angles would be ninety degrees, and lumped mass at

the nodes. There are some exceptions to the definition

of the ideal element. A rectangular shaped element under

constant strain conditions can perform just as well as a

square element shape. Close attention must be given when

such cases arise.

3.4 Quadrilateral Element Geometry Definition

The geometrical relationships of a given

quadrilateral element must be defined in order to

describe and define the possible geometrical distortions

of a quadrilateral element. The geometrical definition

of a quadrilateral element is shown in Figure 3.1.

C 3
EDGE E 4 EDGE

I DENT I F ER- 4  L43  DIRECTION

D B
NODE ;- AN G LE

IDENTI F I E24) IDENTI F IEP

A 2

Figure 3.1. Element geometry definition

The first important definition is the numeration of

the nodes and their corresponding order. Each element
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will have four nodes numbered such as 1, 2, 3, and 4.

Note that each node point will contain a unique node

number and an x and y coordinate value. The numbering

will be sequential from some starting node and marching

around the element in counter clockwise fashion as seen

from above the element. Any of the nodes can be defined

as the first node just as long as the sequential order is

given in a counter clockwise fashion.

The next step is to define or label each of the

edges of the element. From Figure 3.1 one can see that

the edges are defined as A, B, C, and D. Edge A lies

between the first and second nodes and the direction is

from node 1 to node 2. The other edges follow similar

suit, again in a sequential order going counter clockwise

around the element.

The final geometrical definition is that of the

angles of the element. All angles are defined to be

interior angles of the element. The first angle would be

made from edges D and A, the second angle would be made

from edges A and B, and so on. The angles are defined by

the interior angle between the intersecting edges at a

given node point. Ordered nodes with coordinate points,

directed element edges, and interior angles are all that

is required to define the geometry of two dimensional

first order four node quadrilateral elements.
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3.5 Geometrical Distortions of Ouadrilateral Elements

There are five main geometrical relationships that

can be used to define the shape of a quadrilateral

element. These relationships are (1) aspect ratio, (2)

taper ratio, (3) skew angle, (4) triangular quadri-

laterals, and (5) inverted quadrilaterals. These will be

defined in a general sense and extreme cases of these

values are depicted in Figure 3.2.

A
B

B, A
I

A >> B A >> B > 9>

LARGE ASPECT RATIO LARGE TAPER RATIO HIGHLY SKEWED 3

I

TRIANGULAR QUADRILATERAL INVERTED OR CONCAVE 5
I

Figure 3.2. Geometrical distortions

3
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Aspect ratio is defined as the ratio of the length

of a given edge to the length of an adjacent edge. This

makes possible four different aspect ratios. Note that

their inverses would actually create four more

possibilities but only four are required to uniquely

define the possible aspect ratio combinations.

Taper ratio is defined as the ratio of the length of

a given edge to the length of an opposite edge, not the

adjacent edge. This makes possible two different taper

ratios. Note that their inverses would actually create

two more possibilities but only two are required to

uniquely define the possible taper ratios.

Skew angle is defined as the value of the interior

angle given by two adjacent edges at a given node. There

are only four unique angles. Note that one could take

ratios of the angles but the angles themselves are

sufficient in defining the skew of an element.

Quadrilateral triangles are defined as having an

element where three of the four nodes are collinear.

Another definition is given by having one of the interior

angles of the element equal to one hundred and eighty

degrees. Generally such a situation should rarely be

detected in rezoning owing to the fact that the angles

given in the skew relationship should detect and initiate

a fix on elements that have an interior angle which is

approaching angles significantly lower than one hundred
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and eighty degrees. Quadrilateral triangles are in I
essence a subset of the skew angle measure.

An inverted quadrilateral is defined as having a

portion of the element turned inside out or concave. Put 3
another way, one of the interior angle will have a value

which exceeds one hundred and eighty degrees. In some 3
cases the element will not be turned inside out but will

be concave. This is an indication of extreme element I
distortion which causes great problems in the solution 3
process. Inverted elements are also a subset of the skew

angle measure. 3
3.6 Methodology to Determine Geometrical Relationships 3

The aspect ratio of a quadrilateral element is first 3
determined by finding the length of each of the edges.

Since first order quadrilateral elements have straight 3
sides, one is only required to compute the distance

between the beginning node and ending node of each edge. i
The x and y coordinates of each node point and hence the

ends of each edge are known. Once the lengths are

obtained then one finds the maximum ratio of adjacent 3
edge lengths. This will indicate the largest aspect

ratio for the element which in turn will be compared to 3
an ideally shaped element and eventually to a rezoning

indicator.

The taper ratio of a quadrilateral element is 3
40 i
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determined in similar fashion to that of the aspect

ratio. The only difference between determining the tar

ratio value and that of aspect ratio is that taper ratiQ

uses the ratio of opposite edge lengths instead of

adjacent edge lengths.

The skew angle of an element is determined by using

the dot product formula. One first determines which

interior angle is to be determined. Next, the two

intersecting edges that form the angle are selected as

the vectors to use in the dot product formula. The

direction of the first vector (edge) is reversed due to

the definition of the direction of the edges. The

magnitudes of the lengths of the vectors and each of

their x and y components is then determined and used in

the dot product formula. This equation can then be

manipulated in order to solve for the value of the angle.

The same element geometrical configuration of Figure 3.1

depicts the geometry used to obtain the skew angle given

in Equation (3.1b). The dot product is defined by

fDA = lI JAIcosO1  (3.1a)

and solving for the angle

40 = cos-1 DA = cos_1 Dfl.A + lInDYAi (3.1b)
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I
where the angle is defined by element edges D and A of I
Figure 3.1.

The determination of a triangular quadrilateral is

accomplished by either checking if any three consecutive 3
nodes line along a straight line or if any two adjacent

edges have the same slope. Another check is to simply 3
use the skew angle equations and check for any interior

angle which equals one hundred and eighty degrees. I
Inverted or concaved quadrilateral elements can be 3

determined by using the cross product formulation. This

procedure is done in similar fashion to the determination 3
of the skew angle. Two adjacent edges of the element are

taken as vectors, with the vector direction of the first I
edge opposite to the way it is defined. The cross

product formulation is then used. The sine of the angle

term is not required. A negative value from just the z 5
direction component of the equation defines a concave

element. If the value is positive the element is neither I
concave nor turned inside out. This process is repeated

for all four

combinations until any one or none of the combinations 3
indicate an inverted element. The geometry used to help

develop Equation (3.2a) and Equation (3.2b) is identical 3
to that depicted in Figure 3.1. The cross product in

vector component form, which has its z direction

component out of the plane of the element is given by 3
42 I
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DXA = (DYAz-DzAy) i + (DzA.-D,,A) -7 D~-y~) (.a

and solving for just the sign of the z direction

component

INVERT = SIGN(DxAy-DYAx)Z (3.2b)

where a negative sign indicates an inverted element.

Warping will not be considered. It is assumed that

all quadrilateral elements will remain planar. By

observation triangular and inverted quadrilaterals are

definitely defined as distorted elements. The literature

has provided some indication as to what quantitative

degree an element becomes distorted so as to effect the

accuracy of the solution. For an aspect ratio, limit

values have ranged from fifteen to twenty. For skew

angles, values below thirty, forty-five, or fifty degrees

and above one hundred and thirty or one hundred and fifty

degrees have been deemed as too distorted. Taper ratio

values which exceed a two to one ratio have also been

deemed as poor elements. Some have prescribed that

values of any edge being less than one tenth of an

average edge length will create inaccuracies. These

quantitative values have been determined by experience

and intuition. These values have also been used in mesh
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checking routines of finite element codes and pre and I
post processors [20, 27-31].

It is the objective of this investigation of self

adaptive rezoning to determine and quantify these values 3
in a more theoretical or experimental nature. It would

be logical that the geometrical distortion factors should 3
correlate to some degree with the values obtained by

experience and intuition that have been set as rules of I
thumb for distortion values. 3

3.7 Computer Program for Geometry Inspection 3
A computer program , found in Appendix A, was

developed to inspect the geometry of each element in a i
finite element mesh. Each element of the mesh is 3
systematically examined and the maximum values of aspect

ratio, minimum and maximum values of skew angles, minimum 3
values of taper ratios, the inversion of an element, and

coincident nodal points of each of the elements is I
determined. These values are compared to rezoning 3
indicators and stored for use in the remeshing process.

If the comparison is less or exceeds the corresponding i

rezoning indicator (depending on the criteria) the

element is flagged as distorted. i

I
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CHAPTER 4

REZONING INDICATORS DERIVED FROM EIGENVALUE TESTING

4.1 Introduction

A key ingredient in getting a self adaptive rezoner

to work is to be able to automatically identify at what

point and in what manner in the solution process one

should rezone the finite element mesh. Eigenvalue

testing of finite elements can be used to derive

parameters which can be utilized as mesh rezoning

indicators and measures of mesh correction.

Eigenvalue tests are tests of element quality.

Eigenvalue testing is generally used to detect

zero-energy deformation modes, lack of invariance, and

absence of rigid-body motion capability. Eigenvalue

tests have also served as a means to estimate the

relative quality between different elements. In essence

the eigenvalue test solves an eigenvalue problem which is

formulated solely on the finite element stiffness matrix.

The solution yields eigenvalues and eigenvectors which

can be related to the strain energy associated with the

element. The eigenvectors can also be associated with

the possible deformation modes as well as rigid body
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modes of the element. In short the eigenvalue test can I
provide a good indication of how an element should

deform, and provide terms to generate a measure of the

energy associated with that deformation. 3
Rezoning indicators can be determined by using the

results of eigenvalue tests on elements of a given 3
distortion and comparing them against eigenvalue test

results on an ideal element. The eigenvalue test results

are incorporated into an equation to derive the strain 3
energy density. Doing this over a range of distortion

values for the various distortion parameters of aspect 3
ratio, taper ratio, and skew angle, provides a means to

determine at what point the element deformation pattern I
and associated strain energy density begin to create 3
improper results in the solution.

4.2 Method of Deriving Distortion Indicators I

The methodology that is used to derive the I
distortion indicators from the results of an eigenvalue

test is founded on an equation presented in a paper by G.

L. Rigby and G. M. McNeice [32]. The main emphasis of 3
this paper is the development of a strain energy basis

for the study of element stiffness matrices. An equation 3
is developed which relates the eigenvectors and

eigenvalues from an eigenvalue test, along with an

assumed load vector, to the strain energy capacity of the 3
46
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element. Rigby and McNeice believe that this principle

can be extended to investigate the effects and behavior

of geometrical distortions in the elements. This concept

serves as the foundation for the formulation of rezoning

indicators from eigenvalue tests used in this

investigation.

4.2.1 Mathematical Derivation of the Rezoning Indicators

Rezoning indicators which are derived from results

of eigenvalue tests can be shown mathematically to be

directly related to the parameters upon which the

deformation characteristics and strain energy content of

a quadrilateral element are based. This in turn leads to

the formulation of an equation which is based upon the

deformation characteristics and generates the strain

energy of a given element assuming a given load vector.

If one assumes that the displacement model of the

finite element is based on the minimum potential energy

principle then

[k]{d) = {r} (4.1)

This is the basic finite element equation which relates

the element stiffness matrix [k] and displacement vector

[d) to a load vector [r). The assumption is made that

the load vector is proportional to the displacement

vector through a factor X and Equation (4.1) becomes
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[k]{dl = {r} = l{d} (4.2a) i
Rearranging the terms of Equation (4.2a) gives

( [k] -1 [1]){d} = 101 (4.2b) 3

which is an eigenvalue problem where Xi is an eigenvalue i

of the stiffness matrix [k). Each k, has a corresponding

eigenvector [t41 where I

1 for i =j (4.3)
0 for i j i

defines how the eigenvectors are normalized. Multiplying

each side of Equation (4.2b) by [41T and examining the 3
equation for each given mode gives

{d}[k]{d}i = Ai (4.4) i

Recalling that strain energy is defined by 3

2 _I (T K] (I (4.5) 1

a parallel is drawn between Equation (4.5) and Equation

(4.4). Equation (4.4) implies that the eigenvalue of a 3
given mode k, is equivalent to twice the strain energy
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for that mode with the normalized displacements or

eigenvectors being used, thus

2U, = (4.6)

3 Equation (4.6) clearly states that the eigenvalues

derived from an eigenvalue test of an element's stiffness

3 matrix [k] are directly related to the strain energy of

the element associated with the deformation pattern of a

I given mode. A summation of all the eigenvalues divided

by two would then determine the entire strain energy for

a given displacement. This same derivation is given by

3 Cook [27].

The derivation of strain energy can be taken one

3 step further to not only incorporate the eigenvalues but

the eigenvectors as well. This procedure is outlined in

Reference [32] and is summarized as follows. The

3 displacement vector of Equation (4.1) is equated to the

summation of each eigenvector times an assumed

coefficient such that

n
{D} = f Ii (4.7)

where n in the summation is the number of degrees of

freedom in the element minus the number of rigid body
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modes of the element. Equation (4.7) substituted into I
Equation (4.5) and using the relationship of Equation

(4.4) yields I
n

U 1 (4.8)

Utilizing Equation (4.1) , Equation (4.7), and Equation I
(4.4) the coefficient ci can be determined along with 3
premultiplying Equation (4.1) by each eigenvector. The

coefficient is given by

Ci (4.9)I

A i I
Substitution of Equation (4.9) into the strain energy

relationship of Equation (4.8) causes the strain energy 5
equation to become i

U = (}{) (4.10)

It is clear from this derivation that Equation 3
(4.10) formulates the strain energy content of an element

I
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U based on the eigenvectors and eigenvaliies generated from

an eigenvalue test of the element's stiffness matrix.

The load vector utilized in the equation is the load

* vector which creates the deformation pattern

characterized by the eigenvectors and therefore generates

3 strain energy within the element characterized by both

the eigenvectors and eigenvalues.

Equation (4.10) is used in a comparative ratio to

3 finally arrive at an equation which can be utilized to

quantify distortion or rezoning indicators. The ratio is

* the strain energy of an ideal element to that of a

distorted element given by

Pu IDEAL STRAIN ENERGY - --- T.1-DISTORTED STRAIN ENERGY n ({r}) (4.11)

U Calculating values generated from Equation (4.11) over a

* range of the specified distortion parameters of aspect

ratio, taper ratio, and skew angle will create sets of

U data which can be examined for discontinuities in the

change of the strain enerqy ratio values as compared to

3 the changes in given distortion parameter values.

It is also of interest to mathematically examine the

structure of a quadrilateral element stiffness matrix.

3 This permits one to see how the geometry of the element
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is embedded in the equations that form the stiffness l

matrix. These geometrical terms can then be related to

the specific distortion parameters of aspect ratio, taper

ratio, and skew angle. This will illustrate how a change

in the shape of the element can affect the performance of

the element. 3
The standard finite element equation for the

stiffness matrix is l

I[k] f f[B] T[E] [B] dV (4.12)

v

where [B] is the strain-displacement matrix and [E] is 3
the material matrix. The equation is integrated over the

volume of the element. A plane strain isoparametric I

element will be examined. The results for plane stress

and axisymmetric isoparametric elements would only differ I
slightly, thus the plane strain case is representative of 3
the other types of elements used in this investigation.

For a plane strain isoparametric element Equation l

(4.12) would be given as

[k] =ff B]T[EI [B tdxdy=f f BT[E] [B] t~dd 1 (4.13) 1
-1-

I
where t is the thickness of the element, for this case t

I
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I is set equal to one, and J is the determinant of the

Jacobian matrix. These quantities are required for the

transformation of x and y coordinates to that of and Ti

of the isoparametric coordinates.

The geometry of the element is embedded in the

strain-displacement matrix [B] and also the determinant

of the Jacobian matrix J. The geometry of a four node

quadrilateral element can be defined by just the x and y

nodal locations. For isoparametric elements a coordinate

transformation from the x and y coordinates to

isoparametric coordinates and n is given by

4 4

x N= x, y = Ny (4.14)U .2=1

where Ni represents a shape function. The four shape

functions used in the element formulation are

I1
N, = -('-C) (1-Tl) (4.15a)

N2 = 4(1 + )( 1 -+) (4.15b)

N3 = 41i1+0 (1+11) (4.15c)

N4 = +1(1-0 (T4.15d)

I4
These relationships bind the two coordinate systems
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together. If a relationship can be defined which 5
correlates the x and y coordinate points of an element to i

the distortion measures of aspect ratio, taper ratio, and

skew angle, it can then be transformed into the 3
isoparametric coordinates utilizing Equation (4.15a)

through Equation (4.15d). The shape functions, Equation 3
(4.15a) through Equation (4.15d), and their derivatives

are used extensively in the formulation of the strain- I
displacement matrix and the determinant of the Jacobian 3
matrix. The relationship to the geometrical parameters

which describe the shape of the element are therefore an 3
integral part of the stiffness matrix.

Relationships between the x and y coordinates of the i
element and the distortion measures of aspect ratio,

taper ratio, and skew angle can now be determined. The

length of each of the edges as well as the lengths of the 3
two diagonals formed from opposite nodes are easily

determined from the nodal coordinate points. Two area I
equations can also be formulated. The first area

equation is based on solving the area of the two

triangles formed by the first diagonal. Simple 3
geometrical relationships make this possible. The second

area equation is identical, the only difference being the 5
second diagonal, and the two resulting triangles that are

used to determine the area.

The edge lengths, nodal coordinates, and edge 3
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directions are all that is required to determine aspect

ratio, taper ratio, and skew angle. Chapter 3 describes

how these distortion measures are formulated. The four

edge length equations, two diagonal length equations, and

the two area equations, along with one of the distortion

measure equations, can be used to simultaneously solve

each of the eight coordinate values in terms of the given

distortion measure. The solution of these equations is

not included due to the length and amount of algebra

involved. The important point is that the strain-

displacement matrix and the determinant of the Jacobian

matrix of the stiffness matrix can be formulated based on

a given distortion measure in lieu of the x and y

coordinates of the element. These equations would allow

one to directly see the effects of a given distortion,

such as aspect ratio, on the stiffness matrix of an

element since the stiffness matrix becomes a function of

the distortion measure. This in turn also allows one to

study the effects on the deformation patterns and the

strain energy content of the element in terms of the

distortion measure.

The equations derived in this section could be

solved to directly obtain the desired results. This is

possible only if the equations are within the linear

range. For large deformations and strains this is not

the case. No closed form solution can be obtained.
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Nonlinear solution techniques have to be employed. The

best solution to this problem is to empirically derive

the desired results. Using an existing finite element

code which handles large deformation and strain problems

would be the best choice.

4.2.2 Empirical Derivation of the Rezoning Indicators

Since large deformations and strains cause a finite

element problem to be nonlinear, no nice closed form

mathematical solution is possible. An empirical approach

to deriving the rezoning indicators via eigenvalue

testing is therefore required.

In this empirical method an eigenvalue test would

first be run on an assumed ideal quadrilateral element.

The normalized eigenvectors and their eigenvalues would

be obtained for each mode. These are then summed over

all the modes. The value that results is the amount of

strain energy for an ideal element for a given load

vector. Equation (4.10) is used for this purpose. The

next step would be to repeat the same procedure but for

an element with a known amount of distortion. Just one

kind of distortion measure would be used in order to

separate the effects caused by that type of distortion.

This also simplifies the interpretation of the data. The

strain energy for the distorted element is obtained using

Equation (4.10).
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In order to get a relationship between the two

values of strain energy it is best to find the strain

energy density of both the ideal and distorted elements

instead of just the strain energy. Distorting elements

of unit area under controlled conditions simplifies the

procedure to obtain the strain energy density values.

Applying specified displacements to the element in order

to maintain a given type of distortion is a simple

matter. Since plastic deformation is assumed to be

incompressible, the area of the element can always be

maintain at a value of one no matter how extreme the

distortion. This provides for a "normalized" comparison

and yields the strain energy density because the volume

is also of unit dimension. For axisymmetrical cases,

however, the revolved volume must be accounted for. The

ratio of the strain energy density of the distorted

element to that of the ideal element serves as an

excellent comparison.

If the type of distortion is maintained but varied

in degree then a range of comparative values can be

obtained. For example one can vary just the aspect ratio

from a one to one value up to say a forty to one value.

In an empirical approach no function exists to generate a

smooth continuous representation of the strain energy

density ratios versus the range of a given distortion

measure. Individual data points must be obtained and
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then a curve fit between these values in order to obtain I
the intermediate values.

It is assumed that discontinuities seen in plots of

the data will represent points at which an increase in 3
the amount of distortion to the element will

significantly increase the error in the solution process. 3
This will identify the limit on the amount of distortion

an element can handle before the amount of error gets out

of hand. This limit vdlue is the distortion or rezoning 3
indicator for the given distortion measure being used.

Section 4.4 provides the details on how this is 3
accomplished.

4.3 Arqument for Rezoning Indicators Derived from
Eigenvalue Testing 3

The theoretical basis for the eigenvalue test is a

direct extension of a normal modes analysis. In normal

modes analysis one wishes to find the natural frequencies 3
and mode shapes of an unconstrained object. These

quantities provide important information concerning the 3
deformation and vibrational characteristics of a given

structure. If one reduces this down to a single element I
instead of a mesh of elements representing a structure, 3
then theoretically, information that once identified the

deformation modes and natural frequencies of a structure 3
will now do so for a single element. This is important
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because, from this, one can determine the possible modes

of deformation and natural frequencies of a single

element. A study can therefore be made on an element to

element basis. This is essential to the rezoning process

since each individual element must be examined instead of

the entire mesh. Rezoning is associated with the

remeshing of localized problems within the mesh cause by

a single element or groups of elements.

In a normal modes analysis one solves the eigenvalue

problem which involves the stiffness and mass matrices.

The solution generally yields the square of the natural

frequency for each mode. Using these values and a set of

equations one, can then solve for the eigenvectors or

mode shapes. The eigenvectors describe a normalized

deformation pattern for a given mode. The summation of

these deformation modes describes the overall deformation

pattern. For eigenvalue testing the interest is in just

the stiffness matrix. In eigenvalue testing the mass

matrix as seen in the normal modes equation is set equal

to an identity matrix. The procedure is then identical

to that of the normal modes solution.

An assumption is made that if the normal modes

analysis technique is changed ever so slightly to become

an eigenvalue test, that the eigenvalue test might reveal

the deformation characteristics and strain energy content

of the element. The eigenvalues and eigenvectors end up
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being related to the strain energy of the element, and I
the eigenvectors are also related to the possible

deformation patterns.

The eigenvector and eigenvalue for each mode makes a 3
contribution to the overall deformation and to the amount

of strain energy. In essence it is the summation of 3
these values that determines the given deformation

pattern in the element as well as its strain energy I
content. The equations used in eigenvalue testing are 3
described in Section 4.2. An eigenvalue test can

therefore generate quantities that physically describe 3
the deformation modes and strain energy associated with a

given element. These in turn can be used to test the I
nature of the element under various distortions. 3

The number of eigenvalues and eigenvectors extracted

should equal the number of degrees of freedom at each 3
node times the number of nodes. There are three rigid

body modes and iive displacement modes for plane strain I
and plane stress elements. One rigid body mode and six

displacement modes for axisymmetric elements. In some

cases deformation modes appear in mirror images with 3
equal eigenvalues.

Generally an eigenvalue test is used to check that 5
an element's stiffness matrix will provide as many rigid

body modes as is expected. If too few are found this

suggests that the element lacks the desired capability 3
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for rigid body motion without strain. Too many suggests

the presence of mechanisms. These results should be

independent of where or how the element is located and

oriented in global coordinates. Instabilities in the

stiffness matrix can also be determine by the eigenvalue

test. These characteristic quantities of an eigenvalue

test tend to validate the assumption that eigenvalue

testing an element can detect when an element is behaving

poorly due to improper deformation modes caused by

distortions of the element.

A closer examination of eigenvalue testing reveals

that it tests the quality of the stiffness matrix. The

stiffness matrix is derived in part from the shape

functions of the element. These shape functions were

implemented into the formation of the element in order to

properly represent the deformation and strain energy

characteristics of the given object being represented by

the finite element. The shape functions are related to

the geometry of the element and its expected deformation

patterns. If the physical geometry of the element were

to be distorted, this distortion is assumed to directly

change the parameters used in the shape functions. This

in turn affects the stiffness matrix which affects the

possible deformation patterns and strain energy content

of the element. This wa. pointed out in Section 4.2.1.

Theoretically one should see differences in the strain
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energy values of distorted elements when compared to the i
values for an ideal element.

The quantitative value of geometric distortion that

can be applied to an element can be determined by 3
examination of the range of values of strain energy

density ratios of distorted elements to that of ideal 3
elements. The idea is to determine a discontinuity in

the pattern of change in the strain energy density ratios

over a range of changing element distortion. For 3
example, one would examine the change in the strain

energy density ratios with respect to just the change in 3
one element distortion measure such as aspect ratio.

This would be examined from an ideal value of aspect I
ratio to that of an extreme aspect ratio value. A 3
discontinuity such as a difference in the rate of change

of strain energy density ratio values is assumed to 3
indicate the point where the distortions in the element

cause errors in the solution which are too large to I
ignore. This is the basic assumption to quantify 3
distortion measures in order to derive rezoning

indicators. The values of the distortion measures, such 5
as aspect ratio, at the point of the discontinuity are

then defined to be the rezoning indicators. I

I
i
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4.4 Implementation of Eigenvalue Testing

The methodology previously described to derive

rezoning indicators from eigenvalue tests was

implemented. Several techniques were attempted until a

workable solution was obtained. First, a simple case was

examined, that of a one dimensional bar element being

loaded axially. The simple problem was used to

demonstrate th:e relationships between eigenvalue testing,

deformation patterns, and strain energy content. Next,

MSC/PAL2 a finite element program was utilized to run

some normal modes case studies of single quadrilateral

3 elements. Attempts were made to distort the element's

shape from the ideal shape and note any differences in

I the natural frequency values and especially any

differences in the shapes of the normal modes. This

technique proved interesting but inconclusive as to the

3 ability to distinguish any effect of the geometrical

distortion on the element. Changes were noticeable but

i the results were inconsistent and thus no conclusion

could be drawn.

Another approach was made at making the results of

3 an eigenvalue test determine rezoning indicators. This

time Equation (4.10) and Equation (4.11) were used. The

3 equations contain the eigenvectors, eigenvalues, and a

load vector, which were all used in determining the

I
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strain energy of an element under load conditions I
specified by the load vector. In the equations the

normalized eigenvectors and the eigenvalues, not the

square of the eigenvalues, are used. One uses a ratio of

an ideal element's strain energy density to that of a

distorted element for comparison in the amount of change

in the strain energy density due to distortions in the

element. Refer to Equation (4.11). It is the U
differences in the components of the eigenvectors and

eigenvalues of an ideal to distorted element that makes a

difference in the strain energy density content. The

load vector is obtained by determining the resultant

forces to an applied displacement of the element. The I
applied displacement corresponds to the amount of

deformation required to achieve a given distortion

measure. 3
The data required to calculate the strain energy

density ratios, as given in Equation (4.11), is I
accomplished by running the normal modes program in the

ABAQUS finite element code. First order elements in

ABAQUS use lump mass at the node points. Care was taken 3
to select density values so that the mass matrix became

the identity matrix and the eigenvalue problem of I
Equation (4.2b) becomes the equation to solve. At this

point the normal modes algorithm of ABAQUS becomes

identical to an eigenvalue test algorithm. ABAQUS uses i
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I the subspace iteration method so all possible modes are

obtained. Only unconstrained cases were run.

In order to run the eigenvalue tests in ABAQUS a

* material had to be chosen to be able to input the

required values to compute the stiffness matrix. A

1 standard high strength steel was chosen. Assumptions as

to the material values such as the elastic modulus had to

be made. For metals these values are similar for a large

* variety of metals and thus was not a difficult choice.

Material properties are specified in Figure 7.2.

Data is gathered by restricting each eigenvalue test

run to a particular geometrical distortion. Examination

of just aspect ratio, just skew angle, or just taper

* ratio is implemented to study the effects of just one

distortion parameter at a time. An idealized element

* model is also solved for the comparison purposes

essential to Equation (4.11). Unit area elemcits are

I used throughout the process.

ABAQUS was used to perform the eigenvalue tests.

The input file was formulated to obtain the eigenvalues

and eigenvectors for the range of distortion measures

being considered. Initially an ideal element is

I formulated in the model. An eigenvalue test is then

performed on the unconstrained ideal element. The next

step is to use applied displacements on the element in

3 order to plastically deform the element to the desired
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distortion measure. An area of unit dimensions is I
maintained by controlling the values of applied

displacement. At this point the reaction forces are

obtained and used as the load vector in Equation (4.10)

or Equation (4.11). The applied displacements are then

released. The element will then relax by the amount of I

elastic recovery. This amount of relaxation is

negligible in comparison to the permanent deformation

cause by plastic straining. The error in the distortion I

measure caused by this relaxation is negligible. At this

point an eigenvalue test is performed on the I

unconstrained, plastically deformed element of a given

distortion measure. This yields the eigenvalues and I
eigenvectors for the given distortion. Applied 3
displacements are again placed upon the element to

achieve the next increment in distortion value. The I

process repeats itself and continues for all the desired

values of the distortion measure. This process is I
performed for each of the distortion measures considered I

in this investigation.

Plane strain, plane stress, and axisymmetric 3
elements are the elements of consideration. All

distortions are assumed to take place upon an ideally I
shaped element which has edges that are aligned with the

x and y coordinate axes. An aspect ratio is

determined by elongating both of the element's edges 3
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I running in the x direction by equal amounts while the

i other two edges vary equally in the y direction to

maintain an area of unit dimension yet arrive at the

desired aspect ratio. Aspect ratios of 1, 2, 4, 6, 8,

10, 12, 14, 16, 18, 20, 22.5, 25, 30, 35, and 40 to 1 are

* used.

This method of achieving the aspect ratios maintains

a rectangular shaped element throughout the entire range

3 of aspect ratio values. This focuses the study of

distortion effects to just the aspect ratio distortion

3 measure. No taper ratio or skew angle effects are

included.

IleTo achieve the range of taper ratios, the upper
3 element edge is consecutively reduced in length while the

lower element edge is proportionally increased in length.

3 This change is symmetric about a vertical axis. An area

of unit dimension is held for each value of taper ratio.

I The element's vertical height to the length of its lower

edge is maintained to be equal distances. Taper ratios

of 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1

3 are used.

The method of achieving the taper ratio is certainly

I not a totally inclusive way to achieve these values.

Taper ratio maintains ties to skew angle and aspect

ratio. The method used was chosen as one of the best

3 ways to achieve a given taper ratio and yet reduce the
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effects of skew angle and aspect ratio. Like aspect i
ratio the idea is to isolate the effect of taper ratio to

be able to quantify its affect alone.

For skew angle the interior angle of two opposite

element corners were equally reduced for each run while

the other two opposing element corner angles were equally

increased. Each edge length changed in equal proportion

to achieve an area of unit dimension for any prescribed I
skew angle value. The element for each skew angle is

held symmetric about a forty-five degree angle in the x-y

coordinate plane. Skew angles of 90, 80, 70, 60, 50, 40,

30, 20, and 10 degrees are used.

Just like the taper ratio the manner in which the i
skew angle is achieve is not all encompassing. It does

however, generate results which are typical of skew

angles no matter how the skew angle is determined.

Several different approaches were examined and the

results tend to indicate that the manner ir which the i
skew angle was achieved is representative of the majority

of possible cases.

The manner in which the distortion measures of

aspect ratio, taper ratio, and skew angle are achieved

and examined, .s stated previously, are not totally I
encompassing. For example, combinations of two or more

geometrical distortions is not considered. The effect of

when the distortions do not occur in a symmetric pattern
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about the element is also not considered. It is assumed

that the manner used to determine values of the

distortion measures in this investigation, is

representative enough of the combined and nonsymmetric

distortions cases to be able to account for such effects.

The assumption is that the combined cases or nonsymmetric

cases can be thought of as linear combinations of the

type derived in this investigation. For example, if a

distorted element exhibits combined distortions, each

distortion is examined separately and its effect on the

element is considered separately.

The data gathered from the eigenvalue test is

manipulated and put in the form of Equation (4.10) and

Equation (4.11). The values for the ratio of distorted

elements strain energy density to that of an ideal

element versus the distortion criteria were gathered over

the ranges previously stated. Various curve fitting

programs were examined. A least squares polynomial fit,

a cubic spline fit, a linear fit, and a Lagrange

polynomial fit were tried. Along with the fit,

derivati-es and the sensitivity of the curves were also

determined. The derivatives and sensitivity of the

values help indicate the discontinuities and therefore

determine the rezoning indicators. The sensitivity plot

is also used to examine how sensitive the strain energy

density ratio, Equation (4.11), is to a change in a given
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distortion measure. I
A cubic spline curve fit was chosen since it most

closely matches the data while maintaining continuous

derivatives across each of the data points. This is

important when one is trying to select the rezoning

indicators based on a possible discontinuity in the curve

or surface. If discontinuities arise due to the nature

of the curve or surface fit used, then the determination i
of the rezoning indicators could be inconclusive.

4.5 Rezoning Indicator Results from Eigenvalue Tests

The rezoning indicators derived from the results of

eigenvalue tests are summarized in tabular form in Table I
4.1. These values were chosen based upon different types i

of plots that were developed to evaluate the strain

energy density ratio versus a given range of the various

distortion measures. A value was determined for each

type of distortion measure for each type of element that I
was studied. It is interesting to note that the values

for all three element types, axisymmetric, plane strain,

and plane stress are very close in value. This implies

that the general similarties exist since all the element

are quadrilateral elements. Slight differences might be

due to the difference in assumptions used in forming the

element such as an axis of symmetry condition. I
I
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Table 4.1. Rezoning indicators

ASPECT RATIO REZONING INDICATORS

ELEMENT TYPE VALUE

Plane Strain 18.59
Plane Stress 16.80
Axisymmetric 18.38

TAPER RATIO REZONING INDICATORS

ELEMENT TYPE VALUE

Plane Strain 0.58
Plane Stress 0.63
Axisymmetric 0.55

SKEW ANGLE REZONING INDICATORS

ELEMENT TYPE MIN VALUE MAX VALUE

Plane Strain 43 137
Plane Stress 52 128
Axisymmetric 50 130

It is interesting to note that for most cases the

element distortion values are within an acceptable range

of the values stated in literature which were determined

in essence by pure experience [20, 27-31]. The rezoning

indicators were derived by examination of tour plots of

the results obtained through eigenvalue testing.

A three dimensional plot is generated which examines

the relationship between the range of a given distortion

measure, the derived strain energy density ratio values,

and the load vectors obtained for each applied
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displacement representative of a given distortion

measure. In this plot the third dimension was added to

gain insight into how a different load vector might i

effect the results of Equation (4.11). This surface plot

illustrates the full impact of Equation (4.11). Figures

for these three dimensional plots are found in Section

4.5.1 through Section 4.5.3.

The second type of plot is a two dimensional plot. U
This is a plot of strain energy density ratio versus a

range of values of a given distortion measure. In

essence this is a plot which is equivalent to the

diagonal of the three dimensional surface plot. In this

case only one load vector was used for a given distortion I
measure. The load vector used corresponds to the

resultant loads obtained by the applied displacements

which plastically deformed the element to the shape of

the desired distortion measure. Figures for these two

dimensional plots are found in Section 4.5.1 through I
Section 4.5.3.

The third type of plot is the derivative of the I

strain energy density ratio versus the given distortion

measure. This is a plot of the derivative of the second

plot. Since interest lies in finding discontinuities in

the results of the eigenvalue tests, then a plot of the

derivative of these result will more drastically I
illustrate the point at which this discontinuity occurs.
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This helps to quantify the rezoning indicator value.

Figures for the derivative plots are found in Section

4.5.1 through Section 4.5.3.

The fourth type of plot used is that of the

sensitivity of the strain energy density ratio versus a

given distortion measure. This plot is closely related

to the derivative plot except that the sensitivity

equation contains added terms to that of just the

derivative. The equation for the sensitivity of the

strain energy density ratio to a change in the aspect

ratio is given by

V vAR __U

sAR dA (4.16a)

where AR represents aspect ratio as a variable. The

sensitivity for taper ratio is given by

I s TR d'P
STR T--dTR (4.16b)

I
where TR represents taper ratio as a variable. The

I sensitivity for the skew angle is given by

I
s T- dsK (4.16c)
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where SK represents skew angle as a variable. i
The sensitivity plot is another technique used to

quantify a given rezoning indicators value. This type of

plot illustrates the relative sensitivity of a quantity 3
to any degree of change. The more the amount of change

the more dramatic this is illustrated in a sensitivity

plot. The plots can therefore tune in on

discontinuities. Any discontinuity in the plot of strain

energy density ratio versus a given distortion measure 3
will show up as a dramatic change in the nature of the

sensitivity plot. Figures for the sensitivity plots are

shown in Section 4.5.1 through Section 4.5.3.

Each of these four plots aid the others in i
attempting to determine where the discontinuities occur, 3
and hence the value of the rezoning indicator. In some

cases, but not all, at least two or more of these plots

needed to be correlated in order to quantify the rezoning

indicator values. When all four plot correlate to the I
same point of a given distortion measure as the rezoning

indicator, one can assume with confidence that it is the

appropriate rezoning indicator value.

4.5.1 Results for Aspect Ratio

Three dimensional plots shown in Figure 4.1 through

Figure 4.3 were develop from resulting eigenvalue tests

on axisymmetric, plane strain and plane stress elements.

I
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In each of these three dimensional surface plots one I
can see the effects on strain energy density ratio due to

changes not only in the aspect ratio but also in the load

vector. The effects are most dramatic in Figure 4.1 for

the axisymmetric case. In this case a discontinuity in

the surface appears as a hump or bump around an aspect

ratio of twenty. For this plot it is not certain exactly

where it does occur but somewhere near a value of twenty.

This discontinuity also tends to occur near the load

vector value which corresponds to the load vector formed

from the resultant load of an applied displacement to

arrive at or near a aspect ratio of twenty. This

discontinuity is less dramatic for the case of plane I
strain. Upon close inspection, however, it also appears 3
to contain the same type of discontinuity in the same

region. The plane stress case is the least dramatic of

all three plots. The only discontinuities that appear

seem to be away from those aspect ratios which would be I
the logical choices. No conclusion can be drawn on the

plane stress plot.

The two dimensional plots of strain energy density

ratio versus aspect ratio are equivalent to the three

dimensional plots except only one load vector corresponds i

to a given aspect ratio. The two dimensional plots for

each element type are shown in Figure 4.4 through Figure

4.6. 1
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Figure 4.4. Strain energy density ratio versus aspect
ratio for an axisymmetric element
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These two dimensional plots seem to correlate with 1
the corresponding three dimensional plots in indicating

the point at which a discontinuity appears in the plot.

In Figure 4.4 for the axisymmetric case the slope seems

to alter its direction or the radius of curvature changes

its direction at about the point of an aspect ratio of 3
twenty. This corresponds directly with the three

dimensional surface plot of Figure 4.1. The same effect

and correlation is noticed for Figure 4.5, the plane

strain case. Here again the effect is less dramatic. In

Figure 4.6 the plane stress case no discontinuities seem 3
to be present. This is the same conclusion drawn from

the Figure 4.3. I
In the plots of the derivative of strain energy

density ratio with respect to aspect ratio versus aspect

ratio, the derivative of the curve was obtained through

the cubic spline fit of the data points. For cubic

spline fits, the derivative of the curve is continuous I
from one point to the next. More important is that it is 3
also continuous at the point itself. This creates a

smooth curve throughout and the derivatives obtained are 3
reliable and do not induce discontinuities in the curve.

These derivatives are used to help amplify and quantify I
possible discontinuities. The derivative plots for

axisymmetric, plane strain, and plane stress elements are

shown in Figure 4.7 through Figure 4.9 respectively.
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These derivative plots clearly indicate the point of I
the discontinuities seen in the three and two dimensional

plots. In Figure 4.7, the axisymmetric case, a dramatic

change in the derivative plot occurs at a peak value with

an aspect ratio value of 18.38. More interesting is the

fact that below this point the curve seems to oscillate

with small amplitudes and higher frequencies than the

portion of the plot above an aspect ratio of 18.38. This I

point at which the change in amplitude and frequency

occurs corresponds to the point where the discontinuity

occurs in the two and three dimensional plots, Figure 4.1 3
and Figure 4.4 respectively. The exact same conclusions

can be drawn for Figure 4.8 the plane strain case. In I
this case however, the peak value does not occur but the

same oscillation pattern does. The point of change in

the amplitude and frequency of the oscillations occurs at

an aspect ratio of 18.59. In Figure 4.9 the plane stress

case, there is finally some indication of where a I
discontinuity or change in the effect due to aspect ratio 3
might occur. In this case the point at which the

oscillations change amplitude and frequency occurs at an U
aspect ratio of 16.80. There may be some indication that

this value may extend up to an aspect ratio of 20.0, 1
however to be conservative a value of 16.80 is chosen.

Sensitivity plots are shown in Figure 4.10 through

Figure 4.12 for each element type. I
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plane strain element
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These sensitivity plots tend to correlate exactly

with the derivative plots, thus no further explanation is

required. The fact that all four plots for each element

type tend to point to the same rezoning indicator value

adds further confidence to the choice of an aspect ratio

rezoning indicator. A conclusion can be drawn that the

aspect rezoning indicato =ilues for the axisymmetric

case is 18.83, for the plane strain case is 18.59, and

for the plane stress case is 16.80.

4.5.2 Results for Taper Ratio 1
The results of eigenvalue testing an element's

stiffness matrix that are implemented into Equation 3
(4.11) for a range of taper ratios of can be illustrated

in a three dimensional surface plot. This plot has the I
same form and was developed in a similar manner to the

three dimensional plots of Section 4.5.1. It should be

noted in this set of three dimensional plots that values 3
of taper ratio along the taper ratio axis are worse

nearer the origin of the plot than further away from the 3
origin. The same idea applies to the load vector axis

where the load vectors that correspond to worse taper

ratios are closer to the origin of the three dimensional

plot. Three dimensional plots shown in Figure 4.13

through Figure 4.15 were developed from resulting

eigenvalue tests on the three element types.
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In each of these three dimensional surface plots one I
can see the effects on strain energy density ratio due to

changes not only in the taper ratio but also in the load

vector. The plot in Figure 4.13 for the axisymmetric 3
case, however, appears quite different from Figure 4.14

and Figure 4.15, the plane strain and plane stress cases 3
respectively. The only logical explanation for this

difference is that Equation (4.11) generates different

results for taper ratio on axisymmetric elements. It is 3
assumed that the axisymmetric case behaves differently

due to the symmetric nature of the element and its 3
implied restriction with respect to the axis of symmetry.

In the axisymmetric case, Figure 4.13, a I
discontinuity or change in the surface appears as a 3
valley in the direction of the load vector axis around a

taper ratio of 0.5. The plots for the plane strain and 3
plane stress cases appear similar to each other, Figure

4.14 and Figure 4.15. A dramatic change in these plots I
is seen near a taper ratio value of 0.5 near the origin 3
in the load vector direction. This value is slightly

higher for the plane stress case, but both maximum points 3
occur closer to the origin along the load vector axis.

Figure 4.16 through Figure 4.18 are two dimensional I
plots of strain energy density ratio versus taper ratio

for axisymmetric, plane strain, and plane stress elements

respectively. 3
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Figure 4.16. Strain energy density ratio versus taper
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These two dimensional plots seem to correlate with I
the corresponding three dimensional plots in indicating

the point at which a discontinuity or dramatic change

appears in the plot. In Figure 4.16 for the axisymmetric 3
case, the curve seems to alter the direction of its

radius of curvature at about the point of a taper ratio 3
of 0.55. This corresponds directly with the location of

the valley in the three dimensional surface plot, Figure

4.13. The same effect and correlation is noticed for 3
Figure 4.17, the plane strain case. In this case the

change in the radius of curvature or inflection point is 3
noticed to occur at about a taper ratio of 0.55. This

curve appears different than the axisymmetric case which I
is in agreement the differences in the axisymmetric case 3
due to the axis of symmetry. In Figure 4.18 the plane

stress case the same effect and correlation of the plane 3
strain case is found. The change in direction of the

radius of curvature or the inflection point of the curve I
seems to be at a taper ratio slightly higher than 0.6. 1

In the plots of the derivative of strain energy

density ratio with respect to taper ratio versus taper 3
ratio, the discontinuities are amplified in order to

specify their value. The derivative plots are shown in 3
Figure 4.19 through Figure 4.21. These plots are for

axisymmetric, plane strain, and plane stress elements

respectively. 3
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Figure 4.21. Derivative of strain energy density ratio
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These derivative plots clearly indicate the I
inflection point or point of change in the direction of

the radius of curvature seen in the two dimensional

plots. In Figure 4.19, the axisymmetric case, a dramatic 3
change in the derivative plot occurs at a taper ratio

value of 0.55. This appears as a peak value in the plot. 3
The exact same conclusions can be drawn for Figure 4.20,

the plane strain case, and for Figure 4.21 the plane I
stress case. In these latter cases however the shape of 3
the plots are similar to each other but different to the

axisymmetric case. The effect of the axis of symmetry in 3
the axisymmetric case causes the difference in appearance

of the plots. The peak value in Figure 4.20, the plane I
strain case, is at a taper ratio value of 0.58. The peak 5
value in Figure 4.21, the plane stress case, is at a

taper ratio value of 0.63. All of t'.ese values are in 3
agreement with the values determined from the two and

three dimensional plots. U
A similar trend is seen in the plots of the i

sensitivity of the strain energy density ratio with

respect to taper ratio versus taper ratio. The 3
sensitivity of the strain energy density ratio with

respect to taper ratio versus taper ratio for the I
axisymmetric, plane strain, and plane stress cases are

shown in Figure 4.22 through Figure 4.24.
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Figure 4.23. Sensitivity of strain energy density ratio
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Figure 4.24. Sensitivity of strain energy density ratio
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These sensitivity plots tend to correlate overall

with the derivative plots. In Figure 4.22, the

axisymmetric case, a peak value occurs at a taper ratio

of 0.55, the same location found in the derivative plot.

For Figure 4.23 the plane strain case, and Figure 4.24

the plane stress case, no peak values appear. The only

correlation that can be made is that the curves tend to

level out at the peak points indicated in the derivative

plots, thus some correlation exists. An interesting

observation is that all three sensitivity plots are

similar in shape. From this one can conclude that the

sensitivity of the strain energy density ratio with

respect to taper ratio is identical no matter the type of

element used.

The fact that all four plots for each element type

tend to point to the same rezoning indicator value adds

further confidence to the choice of the taper ratio

rezoning indicators. A conclusion is therefore drawn

that the taper ratio rezoning indicator values for the

axisymmetric case is 0.55, for the plane strain case is

0.58, and for the plane stress case is 0.63.

4.5.3 Results for Skew Angle

Three dimensional plots shown in Figure 4.25 through

Figure 4.27 were developed from the results of eigenvalue

tests on the three element types.
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In each of these three dimensional surface plots one i
can see the effects on strain energy density ratio due to

changes not only in the skew angle but also in the load

vector. The effects are similar for each element type.

The general tend is that the surface peaks near the

coordinate origin and quickly drops and then levels off

the further one is away from both the skew angle and load

vector axes. It is assumed that the point where the I
surface begins to change slope dramatically, in 3
transitioning from the peak value to the flat part of the

surface, is the point that would correspond to when the 3
amount of skew angle drastically changes the results of

the solution. In Figure 4.25 for the axisymmetric case, i
this change appears to occur at a skew angle near 50.0 3
degrees. In Figure 4.26 for the plane strain case, this

change appears to be at a slightly lower value, some 3
where near 40.0 degrees. In Figure 4.27 for the plane

stress case, this change appears to be at about 55.0 I
degrees.

The two dimensional plots of strain energy density

ratio versus skew angle follow. Note that a cubic spline 3
curve fit was used to fit a curve to the data points.

The two dimensional plots for the axisymmetric, plane 3
strain, and plane stress case are shown in Figure 4.28

through Figure 4.30.
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The two dimensional plots seem to indicate in a 3
general sense when the skew angle tends to dramatically

change the effect of the solution. These values tend to

correlate with the three dimensional plots. In Figure 3
4.28 for the axisymmetric case, no inflection point or

change in the radius of curvature exits. One can, 3
however, use the same assumption applied to the three

dimensional plots that the point where the slope of the I
curve begins to change more quickly is the point of i

interest. This seems to occur at about 50.0 degrees. In

Figure 4.29 the plane strain case, and in Figure 4.30 the 3
plane stress case, there is a change in the radius of

curvature direction or an inflection point in both plots. I
This seems to occur at about 47.0 degrees for the plane 5
strain case, and at about 53.0 degrees for the plane

stress case. These values correspond to those determined 3
for the three dimensional plots.

In the plots of the derivative of strain energy I
density ratio with respect to skew angle versus skew

angle, the values are determined by obtaining the

derivative from the cubic spline curve fit. This is the 3
same procedure used for the derivative plots on all of

the distortion measures. The derivative plots are shown 3
in Figure 4.31 through Figure 4.33 for the axisymmetric,

plane strain, and plane stress cases.
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The derivative plots indicate to some degree where

the point of the change in direction of the radius of

curvature or inflection points of the two dimensional

plots occur. In Figure 4.31, the axisymmetric case,

there is no real indicating point. The curve appears to

have no change in the direction of the radius of

curvature nor any discontinuities. All that one can

assume is that an indicator point might occur somewhere

in the range of 40.0 to 65.0 degrees. This assumption is i

based on the fact that the slope of the curve in this

region is beginning to change rapidly. This might 3
indicate the solution is increasing its error quicker

within this region. In Figure 4.32, the plane strain

case, at about a point of 45.0 degrees the plot seems to

peak and level off. In Figure 4.33, the plane stress

case, the plot here also peaks and levels off but at a

point of about 55.0 degrees. These values correlate to

the values determined from the two dimensional plots,

Figure 4.28 through Figure 4.30. This correlation adds

confidence to the values being selected for the rezoning

indicators of skew angle. 3
In the plots of the sensitivity of the strain energy

density ratio with respect to skew angle versus skew 3
angle similar conclusions can be drawn. The sensitivity

plots are shown in Figure 4.34 through Figure 4.36 for

the axisymmetric, plane strain, and plane stress cases.
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The sensitivity plots tend to indicate more n

precisely the point of interest. In Figure 4.34, the

axisymmetric case, one can observe the an oscillation

pattern in the curve. At angles smaller than 50.0

degrees the amplitude is smaller and the frequency

higher. Above 50.0 degrees the amplitude increases and

the frequency is reduced. This sensitivity plot is

different from the plane strain and plane stress cases.

As seen in Figure 4.35, the plane strain case, at 43

degrees the plot tends to peak and level off. This same

effect is seen in Figure 4.36, the plane stress case. In

this case the peak point corresponds to when the curve

levels off, which is at 52 degrees.

The fact that all four plots for each element type

tend to point to the same rezoning indicator value adds

further confidence to the choice of skew angle rezoning

indicator. The skew angle rezoning indicator value for

the axisymmetric case is 50 degrees, for the plane strain

case is 43 degrees, and for the plane stress case is 52

degrees. An assumption is made that the decrease in the

number of degrees in the skew angle from 90.0 degrees, to

arrive at the skew angle rezoning indicator values, can

be applied to angles that are also greater than 90.0

degrees. This provides a minimum and maximum range of

values for the skew angle. Maximum skew angle values are

130 degrees for the axisymmetric case, 137 degrees for
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the plane strain case, and 128 degrees for the plane

stress case.

4.6 Verification Methods of Rezoning Indicators

State variables such as deformation, strain, stress,

along with strain energy density are presently used as

means to determine when and how rezoning should occur.

These state variables provide a functional way of

determining when, how, and to what degree to rezone.

Since state variables are directly involved in the

solution process they provide a direct link to how the

solution is progressing. A link can also be made to the

constitutive or material model to verify that values that

are obtain are still within the bounds of the material

behavior. In large deformation and strain problems many

of the models are provided in rate form so as to be able

to provide history response to the analysis. It would

therefore be logical to look at the state variables in

rate form. This would be especially true of strain rate.

The sections that follow discuss how state variables and

other solution processes can be used to indicate when and

where rezoning should occur. This leads to the

conclusion that such measures can be used to validate

rezoning indicators derived from eigenvalue tests. If

these rezoning measures are examined in conjunction with

the eigenvalue test derived rezoning indicators, and if
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they are in agreement, then one has validated the I
effectiveness of rezoning indicators derived from the

eigenvalue tests by an independent means.

4.6.1 Jumps and Steep Gradients of State Variable Values I
Deformations, strains, stresses, and strain energy

densities can be very large in given areas of a mesh. If

the gradients of these values are steep in areas of

element distortion, then one has an indication that the

solution process may have gone awry and rezoning will be i
required. Jumps in state variable values tend to

indicate localized problems in the finite element mesh

which could be due to distortions in the elements. Most

of the work to date has been done in this regards by

looking at deformations, strains, stresses, and strain

energy density jumps or steep gradients of these values

across a finite element mesh. Much of this work, I
however, has been for static linear finite element

problems used in optimization of the mesh. There is,

however, a fair amount of work done that has used jumps

and steep gradients of displacement, strain, stress, and

strain energy density as rezoning measures for quasi i
static and dynamic problems of large strains and

deformations [19, 33-39].

The state variable gradient differentials or

contours provide information as to when, where, and how

I
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much rezoning should be done. The gradient differentials

can not only indicate the elements that need to be

reshaped but the regions of the mesh which need

refinement as well. Generally this is accomplished via

an h-type refinement. The refinement in the mesh helps

to smooth out the discontinuities and provides more

elements in areas of steep gradients thus assisting in

the avoidance of numerical difficulties and solution

inaccuracies.

The benefit of using these rezoning measures is that

the information is directly available from the results of

the solution. Contour plots make a visual inspection of

these quantities and location of steep gradients

possible. Examination of the data can determine the

magnitude of the jumps in the values. Often this

corresponds with the areas of steep gradients.

Correlation of the results obtained from jumps and

steep gradients of displacement, strain, stress, and

strain energy density to the rezoning indicators derived

from eigenvalue tests would provide an excellent means

for validation of the rezoning indicators. This

correlation is made to some degree in this investigation

by examination of contour plots of effective plastic

strain, Mises stresses, and strain energy density. The

examination of strain jumps is also included in this

investigation. This process of examining the contour
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plots of equivalent plastic strain, Mises stress, and l

strain energy density is used on two example problems.

Chapter 7 and Chapter 8 describe the results of the

comparison of these contour plots to the result obtained

from the two example problems.

4.6.2 Changes in the Time Step or Increment Size

The time step plays a critical part in the solution

process for dynamic problems. An implicit code is

generally used so that the time step can be increased. I
If in the process a given element's distortion greatly

exceeds the values determined by the rezoning indicators,

this might indicate the need to reduce the time step

size. As the solution progresses and things improve the

time step can then be increased. This would be

especially true in impact problems at the point of

impact. Even if the rezoning process is performed I
properly the necessity to alter the time step may still

be present. Generally the change in time step should be

small. A dramatic or constant change in the size

reduction of the time step would indicate the solution

process is having difficulty in reaching equilibrium. I
This can be the result due to the difficult nature in

solving the problem or could be an indication that

distorted elements are playing havoc with the solution

process.
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Changes in increment size may also be required for

quasi static problems. Often times the increment size on

the applied forces causes solution difficulties when the

size of the force is large. When this occurs the number

of iterations required to reach equilibrium increases

dramatically. Generally one can determine an appropriate

load increment size prior to execution of the problem.

Distortions in elements may in fact mislead the solution

by creating pseudo load unbalancing. This causes the

solution process to continually reduce the load increment

size in an unwarranted fashion.

The repeated reduction of the time step or the

increment size, that would cause a halt to the solution

process or drastically slow it down, has several

implications. The implication of interest would be that

the repeated reduction is due to difficulties encounter

by distorted elements in the mesh. The study of this

effect was implemented in this investigation to help

determine at what time step or increment one should stop

the solution and examine the mesh for distorted elements.

The use of this technique provides a qualitative measure

for validation of rezoning indicators derived from

eigenvalue tests.
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4.6.3 Plasticity Index Versus Strain Rate i
A useful indicator in adaptive rezoning is that of a

strain rate measure. Many times in the finite element

analysis false readings of strain and especially strain 3
rate can be obtained. The results have the appearance

that the solution is proceeding in a correct fashion,

when in reality the strain rate may be exceeding the

capabilities of the material, and is beyond its failure

point. If one, however, looks at the time response of

the variables, a different picture may develop. Such a

case might indicate the need for rezoning based on the

fact that an insufficient number of elements are present

or the distortions in the elements cause the strain rate I
measure to exceed its proper bounds.

The plasticity index plotted against the strain rate

for the true material behavior can be used as a means to

curb the regions of proper and improper material

behavior. Comparisons between this plot and the models I
behavior can be examined. This measure of strain rate

behavior compared to the plasticity index can serve as an

effective rezoning indicator.

Given a region which exceeds the strain rate

capability one could determine first if the material has I
failed or if the elements are so distorted that they

provide erroneous results. If there are distorted

elements in this region marked by excessive strain rate
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then one could use the plot of the plasticity index

versus the strain rate to determine how much error there

is in the model. This can be corrected and the mesh

refined or corrected in this region.

The idea behind this is to refine the mesh in

regions where the strain rate is high. In these regions

differentials in strains will be high thus the region can

more accurately be modeled and the discontinuities ironed

out if the mesh is refined. The element distortions

would be corrected along with the refinement process.

If the results of this rezoning measure are

correlated with those of eigenvalue test rezoning

indicators, then one can assume that eigenvalue test

rezoning indicators can also make corrections to the

finite element model to avoid the use of incorrect strain

rates. Unfortunately no reference material was available

for this type of rezoning process. This rezoning measure

was not used in this investigation for the verification

of eigenvalue test rezoning indicators.
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CHAPTER 5 I

MESH MANIPULATION IN SELF ADAPTIVE REZONING I

5.1 Introduction

The mesh manipulation procedure or remeshing process

of the rezoner provides the means to generate a new mesh

filled with valid and well shaped elements. The rezoning i
indicators serve as identifiers of regions to be rezoned

as well as how the rezoning should take place within that

region. The region can be rezoned by reshaping the

existing elements, refining the mesh in the region, or by

a combination of both. Generally the region is selected

so that the boundary to this region is surrounded by

existing valid elements which will not be distorted

themselves within a number of time steps or increments

further into the solution process. This helps to reduce

the number of rezonings that would be required. This

process permits elements near distortion to be reshaped

and thus be usable in an increased number of time steps I
or increments than if left unrezoned. This is a I

necessary requirement.

Once the mesh region to be rezoned has been

identified than a meshing technique is implemented to

I
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generate the new mesh. The form, shape, and number of

elements of the new mesh is generated by the values of

the rezoning indicators when compared to the past,

present, and future states of deformation in the

elements.

5.2 Meshing Techniques

Many schemes or techniques exist to perform finite

element mesh manipulation or remeshing. Various mapping

techniques such as transfinite, laplacian, isoparametric

and conformal mapping are examples of such schemes.

Others that have been successful are subdivision by

quadtree encoding, a least squares method, and various

adhoc meshing methods [40-50].

One technique that has received much attention and

is vary powerful is that of non-uniform rational

b-splines or NURBS. NURBS can be used not only to

generate sculptured surfaces, but the technique has the

ability to fit a given set of data. A combination of

these qualities is required in a remeshing scheme. One

must fit the new mesh into a region of existing nodes and

elements. A match up to the nodes and elements which are

present and not part of the rezoning process is an

essential requirement. A fit to existing node points is

therefore required. A mesh must formed within the

boundary defined by these nodes of the old mesh which
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were not included in the rezoning process. In this case

the sculptured surface creation techniques of NURBS comes

in handy.

NURBS have the properties of allowing local changes

within a surface without effecting the rest of the

surface. This allows one to use NURBS to locally move

nodes about in order to optimize the shape of the

remeshed region. NURBS generally follows the shape of

the defining polygon, that is they exhibit strong convex

hull properties. They can therefore be effective in

matching up to the existing nodes and elements. The

order of the fit is only limited by the number of points

given in the definition of the NURBS surface. This

allows for meshing of complex regions [51].

It is believed that NURBS used in some adhoc fashion

or in combination with other schemes would provide an

ideal mesh manipulation tool for rezoning. Many CAD and

finite element pre and post processors utilize NURBS to

be able to create a variety of surfaces. The control in

using and fitting a NURBS surface to a given regions is

excellent. This characteristic makes it an ideal choice

for remeshing in the rezoning process. A combination of

element reshaping as well as mesh refinement is generally

required, and would be of no problem implementing an

adhoc version of NURBS in possible combination with

another mapping technique. To implement this in an
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automatic fashion where the rezoning indicators are

dictating how the NURBs formed mesh is generated, is at a

minimum to say, a very difficult task.

5.3 Location and Manner of Remeshing

jThe determination of the where and how to remesh a

given region of a finite element mesh, can in most cases

Ibe controlled by the rezoning indicators. This will not

always be the case but a few simple rules can be

implemented where the rezoning indicators can be used in

the majority of the cases of remeshing elements that are

flagged for rezoning.

IFirst, it is desired that the new mesh be better
jthan the previous mesh. Furthermore, it is desired that

the region of the new mesh not require rezoning only

after a couple of increments or time steps. This may not

be possible in regions which involve a great amount of

Ichange on a constant basis. The rezoning process should

still provide the best mesh for the given situation.

The region of rezoning must at a minimum cover all

the distorted elements. Numerous localized regions or

entire sections of the mesh can be considered. As a rule

of thumb those elements which surround the distorted

elements and surround those elements which are close to

Ior approaching the limits set by the rezoning indicators,

but do not fall into this category, should form the
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boundary of the mesh rezoning region. According to Saint I
Venants principle the effect of a poor element is

localized. As long as the local region of its effect is

remeshed correctly then proper rezoning has taken place.

The idea is to obtain a rezoning region of the mesh where

the boundary nodes and elements to the region behave

properly. When this region extends to the physical

boundary of the mesh then this physical boundary must be i
maintained during the rezoning. Nodes and elements can

shift along the boundary but must adhere to this physical

dimension.

The amount of reshaping of the elements and

refinement of the mesh is determined from the rezoning i
indicators. In some instances the physical geometry of

the problem or the remeshing technique used may prohibit

the amount of rezoning specified by the rezoning 3
indicators. In this regards it is important to build in

rules which apply to such cases. Generally the i
indicators will provide an indication of the amount of

rezoning to be done and the remeshing technique employed

should stay with in those bounds. When difficulties i

arise in this type of situation, the region of rezoning

can be enlarged to include more of the valid elements if i
possible. This increases the total rezoning region in an

effort to overcome any remeshing difficulties. Another

solution is stay with in the specified regions but refine

134

I



the mesh. Increasing the number of elements in a given

region may also aid in overcoming remeshing difficulties.

5.4 Updating the Finite Element Database

A key feature to the rezoning process is the ability

to access and change the model database. First, access

is required in order to examine the finite element mesh.

Second, as the rezoning process occurs one must be able

to update the newly rezoned regions into the finite

element model. This means the deletion, creation, and

movement of nodes and elements while still maintaining

the linking relationships between the nodes and elements

of the mesh. Generally a renumbering and relabeling of

the nodes and elements will be required. The old mesh

and its nodal and element values must also be stored as

part of the rezoning process so that a comparison and

remapping of the element variables can occur. This

process is a simple bookkeeping technique.

5.5 Implementation of a Remeshing Technique

The remeshing technique described in this chapter

can be effectively used in a self adaptive rezoning

I algorithm. As mentioned in Chapter 4 the implementation

of such an algorithm would be at the level of creating an

expert system. There are a lot of judgements to be

L considered in order to optimize the remeshing phase of
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self adaptive rezoning. Each remeshing sequence of the U
rezoning process calls for a unique new mesh to be

created. This, in combination with the infinite number

and types of problems which involve rezoning, calls for a

remeshing algorithm which has artificial intelligence.

Utilizing the rezoning indicators to determine the

regions of the mesh to be remeshed is fairly straight

forward. The difficult part is determining how to I
generate the new mesh in the rezoning region and do so in

an optimized fashion. One must also consider if the

variables from the old mesh can properly be transferred

to the new mesh based on the layout of the new mesh, not

on the remapping procedure. A user of a rezoner would I
not have much difficultly in performing this task if 3
supplied with the proper data. This data is the results

of examining the old mesh with the rezoning indicators. 3
The important part is that this information is not only

gathered for the present state but also for future I
states, and even past states of deformation. This allows

the user to make judgement calls on how to create the new

mesh. The data supplies information on the patterns of

deformation within the mesh throughout a given portion of

the solution. This data can therefore be used for I
information on how and when elements become distorted.

This lets the user make judgement calls on how to best I

optimize the new mesh region. To create an algorithm to 3
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take the users place and automate the process, is at best

a tremendous undertaking and one not suited for this

investigation.

In this investigation the focus has beei placed

first on the determination of rezoning indicators derived

from eigenvalue tests of quadrilateral elements. The

next level of emphasis was to define a specific technique

required to obtain a self adaptive rezoning process. The

remeshing phase for this investigation was built on an

approach which required user intervention. The user

takes the place of the so called expert system or

artificial intelligence that would be required by a self

adaptive remeshing algorithm. All judgements regarding

how to remesh were based on results of the rezoning

indicators. The user generates the mesh utilizing either

a CAD program or a finite element pre and post processor.

With a little work the user can arrive at an optimized

mesh. This procedure was used in this investigation.

AutoCAD, a computer aided design program was used to

help create the new meshes. Several drafting techniques

and surface mesh routine within AutoCAD aided in the

generation of new meshes. The old mesh was used as a

template for the creation of the new mesh.
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CHAPTER 6 I

REMAPPING OF VARIABLES TO THE REZONED MESH I

6.1 Remapping Techniques

The final step to complete the rezoning process is

to remap the nodal and element variables from the old

mesh onto the new mesh. The solution process can then I
restart at the time step or increment which was flagged

for rezoning.

Most remapping techniques use some type of

interpolation, least squares fit or weighted parameters

based on the position of the old mesh to that of the new

mesh. The remapping process restores the values of the

element variables at the new locations. Generally if the I
interpolation scheme utilized is based on the same

interpolation function of the elements then the procedure

works well. Remapping need only occur in the mesh

regions which received changes from the rezoning process

and not over the entire mesh [12, 20, 21, 52, 53]. U
Some finite element codes, which include interactive

rezoners, have algorithms which allow the remapping or

interpolation of the old mesh to the new mesh. It is

clearly advantageous to use a built in remapper if it is

I
138 I

I



available and deemed to be appropriate. In most cases

these remapping schemes are created to provide the best

remapping possible for the given mesh with consideration

to computational effort. In this investigation the

remapping scheme in ABAQUS' finite element code was used.

The interpolation or remapping technique used in

ABAQUS is as follows [18]. One must obtain all the

element variables at the nodal locations. This is done

by extrapolating all the values from the integration

points to the nodes and then averaging the values of all

the elements that interface at that given node. One then

determines the integration points of the new mesh with

respect to the nodes of the old mesh. The element in

which a old mesh nodal point lies is found, and its

location in new element is determined. The variables are

then interpolated from the node of the old mesh to the

integration point or points of the new element. All the

variables are automatically interpolated within the

ABAQUS code. This is true for quasi static problems.

The remapping technique, however, was not implemented in

ABAQUS for dynamic problems. Dynamic problems, therefore

require the user to remap dynamic related variables such

as the velocities. For dynamic problems the strains, and

stresses are still remapped automatically.

A point of caution must be made. Like many visual

post processing results which average variables at the
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nodes, remapping techniques which do likewise may in fact I
be smoothing over discontinuities in the solution. This

very technique may introduce inaccuracies into the

solution. For the most part the inaccuracies would only 3
occur if the jumps or discontinuities at the nodal points

are extreme in relative value. The rezoning process

itself should continually correct the mesh such that

these extremes in values would never be generated. The I
values averaged at the nodal points would therefore be n

relatively small in comparison. Proper and timely

rezoning should avoid the "smoothing over" of 3
discontinuities that might occur in the remapping phase.

6.2 Remapping as a Quality Control on Rezoning

As previously mentioned, when jumps or

discontinuities in element values appear in the newly H

remapped region, this is an indication of either improper

interpolation of the variables during remapping or that

improper, insufficient, or belated rezoning has occurred. 3
Either the element shapes were improper or more than

likely the mesh was insufficiently refined. Lack of 3
refinement is usually associated with discontinuities in

the solution. On the other hand the rezoning process can

be applied too late, letting too much distortion take

place within the elements. A combination of these

effects is also possible. 3
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A quality control on the rezoning process can be

achieved by examination of the element variables on the

newly remapped region. This process in its own right can

be included as a rezoning indicator. If this quality

control indicator, the check for discontinuities in

variables at the nodal locations, determines that there

are discontinuities then one must rezone again, or even

step back a few time steps or increments and then rezone.

This assumes that the discontinuities were not caused by

the remapping or interpolation of variables, but were due

to lack of rezoning or element distortions. This same

quality control may also indicate a need to change the

time step or increment size.

141



i
U

CHAPTER 7 U

TEST PROBLEMS i

7.1 Class of Large Deformation Problems

The class of problems that can be used as test

examples of the rezoning process are those which involve

large deformation, and finite strains. Impact and metal I
forming processes are typical of this class of problems.

They would be representative of typical dynamic and quasi

static problems involving large deformations and strains. 3
Selecting a standard high strength steel as the material

to be used in these problems allows one to use many of 3
the elastic-plastic models that presently exist. ABAQUS

contains all the key ingredients to solve this type of I
problem and is set up to be able to implement the 3
adaptive rezoning algorithm. Two test problems have been

selected as candidates to test the method of rezoning 3
developed in this investigation. Rezoning indicators

derived from eigenvalue tests were used in the rezoning I
process of these test problems to verify and validate i

their quantitative values as wells as their qualitative

value to the self adaptive rezoning process. i

I
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7.2 Upsetting Billet - A Metal Forming Problem

The first problem involves the upsetting of a

cylindrical billet. This is a classical metal forming

problem in which a small cylindrical billet of metal is

squeezed between two flat rigid dies. The rigid dies are

modeled by flat rigid surfaces which are perfectly rough.

Empirical data for similar problems exist in the

literature [14, 15, 54]. This problem serves as an

excellent study of the rezoning process in a quasi static

metal forming problem.

Figure 7.1 illustrates the geometry and finite

element model of the upsetting cylindrical billet. The

cylindrical billet is 30 mm (1.18 inches) long, with a

radius of 10 mm (0.394 inches).

Rigid Dye 30 mm
Oye m'-,-[_yl indr ical Bi I let

Figure 7.1. Model of the cylindrical billet
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The material definition is the same that appears in 3
Lippmann [54] and in ABAQUS' example problems manual

[55]. The values correspond to typical steel and are

given in Figure 7.2. 1

YIELD STRESS WOR

YOUNG'S MODULUS 2D600D 0 MPB

LU) POISSON'S 
RATI .. . 3T

w 
I INITIAL STATIC YIELD ST ESS 700 MPl

WORK HARDENING RA7E 300 MPa

DENSITY 7833 KgIM3

STRAIN RATE DEPENDENCE STRESS=ffSTRAIN RATE)

STRAIN 
I

Figure 7.2. Material definition I

The model uses four node, first order quadrilieteral m

elements. The elements used are axisymmetric elements. m

As a point of interest the same problem could be run

using plane strain elements and hence plane strain m

assumptions. In this case the model would represent a

long rectangular billet. The billet would be of such

length that plane strain assumptions can be applied.
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This allows one to use nearly the exact same model used

for this problem, with only slight modifications. This

permits one to study a different element type with

approximately the same model. The plane strain case of

the problem was not computed since its results in

relationship to rezoning parameters would not provide a

great deal of new insights in comparison with the results

using axisymmetric elements.

Due to the symmetry of the problem only one fourth

of the cylindrical billet is modeled. The nodes along

the central axis are constrained radially. The nodes

along the midsection radius are constrained axially.

There are a total of 169 nodes and 144 elements. The

rigid surface is modeled to displace 9 millimeters

axially downwards at a constant velocity. The total

3displacement of the rigid die or surface achieves a sixty
percent reduction in the size of the cylindrical billet.

3Interface elements are used along the top surface for
*modeling the contact between the model and the rigid

surface. The friction values between these two surfaces

*is modeled with very high values to achieve the perfectly

rough surface contact. The definition of the finite

3element model in terms of the node and element numbers,

and consequently the relationship between the nodes and

elements is illustrated in Figure 7.3. Note that some

3node and element numbers are omitted for clarity. The
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pattern for numbering, however, is quite clear. All

nodes and elements increase sequential across the mesh

and increase by a value of 100 in the vertical direction.

I
1202 203 1204 1205 1206 1207 1206 1209 1 210 121 1 212

1201 1213

11 1102 1103 1104 11a5 1106 1107 1109 110 9 10 j

1101 1 - 113 5
1001 1002 1003 1004 1005 1005 1 D0 7 100 1009 1010 101 1012

1001I 113I

901 002 903 - - - 91 1 9 1 3

901 -1 - - - 913

901 612 5
601 -- 13

701 712 

__0t- - - - 13

501 612

601 --- 3 5
501 512

so 1 513 3
401 412

401 - - - - - - - - - - - 413

301 312 1
301 313

201 202 203 21a 211 212 21

201 - - - - - - -- 213

101 102 103 104 105 106 107 10 10 111 11

101 - 113

1 2 3 5B 9 1 0 1 12

II
2 3 5 6 7 9 10 1 12

Figure 7.3. Finite element model for the upsetting 3
billet problem
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7.3 Results of the Upsetting Billet Problem

The upsetting billet metal forming problem was

initially run without any rezoning used. The problem ran

for forty increments. The problem ran to 93.9 percent

completion as far as total percent traveled by the rigid

die or surface which caused the billet to deform. The

reason for failure to complete the analysis was due to

excessive element distortions. This created numerical

difficulties and excessive repeated attempts to reach

equilibrium in the solution algorithm. This caused the

solution process to terminate.

Figure 7.4 contains the deformed mesh at the point

at which the solution was terminated. All elements that

exceeded the distortion limits set by the rezoning

indicators are shown with a dense double cross hatched

pattern. Thirty-six elements were flagged as being too

distorted. This is approximately twenty-five percent of

the total number of elements in the mesh. One taper

ratio violation, thirty-six skew angle violations, and

two inverted elements were detected by the rezoning

indicators. Sixteen elements were within twenty percent

of the distortion limit values. These sixteen elements

were not included in the thirty-six flagged for rezoning
by the rezoning indicators. These elements appear as the

lightly cross hatched elements in Figure 7.4.
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Figure 7.4. The mesh of the upsetting billet at the point
of termination for the nonrezoning case

Figure B.1, Figure B.2, and Figure B.3, found in I
Appendix B, are contour plots of equivalent plastic 3
strain, Mises stresses, and strain energy density

respectively, for the final increment of the nonrezoning 3
case before termination of the solution. Table B.1 of

Appendix B contains a listing of strain jump values at I
the nodes of the element which were flagged for rezoning I

and those within twenty percent of this mark.

The problem was run again, this time using the I

rezoning technique with eigenvalue test derived rezoning

indicators. A total of seven rezones were required I
during the solution process. Once the mesh was flagged

for rezoning the solution process was still allowed to

run to completion or as far as possible. An interesting 3
148 I
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I note is that after the first rezone the solution ran to

completion.

The first rezone occurred at increment number ten

with a total of 37.7 percent of travel of the rigid die

completed. One element exceeded the rezoning indicator

limits. This was a skew angle violation. This element

is shown as the dense double cross hatched element in

Figure 7.5. No elements were within twenty percent of

reaching the distortion limits.

Figure 7. 5. The mesh of the upsetting billet at the
point of the first rezoning
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Figure B.4, Figure B.5, and Figure B.6, found in I
Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the first rezoning. 3
Table B.2 of Appendix B contains a listing of strain jump

values at the nodes of the elements which were flagged 3
for rezoning and those within twenty percent of the

rezoning indicator values. I
Figure 7.6 illustrates the new mesh that was created 3

using the remeshing technique described in Chapter 5.

The mesh changed from one hundred and forty-four to one 3
hundred and sixty-five elements and from one hundred and

sixty-nine to one hundred and ninety-three nodes. Fifty I
new nodes and sixty-five new elements were created. The 3
old mesh variables were automatically remapped via

ABAQUS' remapping algorithm. 3

Figure 7.6. The mesh of the upsetting billet after
remeshing for the first rezoning
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I The second rezone occurred at increment number four

after the first rezone with a total of 44.8 percent of

travel of the rigid die completed. One element exceeded

the rezoning indicator limits. This was a skew angle

violation. This element is shown as the dense double

cross hatched element in Figure 7.7. One element was

within twenty percent of reaching the distortion limits.

This is indicated as the less dense cross hatched element

in Figure 7.7. One taper ratio of an element was within

the twenty percent margin.I

Figure 7. 7. The mesh of the upsetting billet at the
point of the second rezoning
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Figure B.7, Figure B.8, and Figure B.9, found in U
Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the second

rezoning. Table B.3 of Appendix B contains a listing of

strain jump values at the nodes of the elements which

were flagged for rezoning and for those that were within

twenty percent of the rezoning indicator values. I
Figure 7.8 illustrates the new mesh that was created

using the remeshing technique described in Chapter 5. A

total of six new nodal positions and thirteen new element

positions were created in the remesh. No new elements

were added to the mesh. The old mesh variables were I
automatically remapped via ABAQUS' remapping algorithm.

I
I
I
I

Figure 7.8. The mesh of the upsetting billet after
remeshing for the second rezoning 3
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The third rezone occurred at increment number five

after the second rezone with a total of 61.2 percent of

travel of the rigid die completed. Five elements

exceeded the rezoning indicator limits. One taper ratio

violation, and four skew angle violations were detected.

These elements are shown as the most dense double cross

hatched elements in Figure 7.9. A total of three

elements were within twenty percent of reaching the

distortion limits. These are indicated as the less dense

cross hatched elements in Figure 7.9. Three skew angles

of these elements were within the twenty percent margin.

Figure 7.9. The mesh of the upsetting billet at the point
of the third rezoning
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Figure B.10, Figure B.l1, and Figure B.12, found in I
Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the third rezoning. 3
Table B.4 of Appendix B contains a listing of the strain

jump values at the nodes of the elements which were 3
flagged for rezoning and those which were within twenty

percent of the rezoning indicator values. I
Figure 7.10 illustrates the new mesh that was 3

created using the remeshing technique describe in Chapter

5. The entire mesh was rezoned to help reduce future 3
distortions. One hundred and fifty-five elements and one

hundred and eighty nodes make up the new mesh. The old I
mesh variables were automatically remapped via ABAQUS' 5
remapping algorithm.

I
I

lI

Figure 7.10. The mesh of the upsetting billet after
remeshing for the third rezoning 3
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The fourth rezone occurred at increment number four

after the third rezoning with a total of 69.7 percent of

travel of the rigid die completed. One element exceeded

the rezoning indicator limits. This was a skew angle

violation. This element is shown as the dense double

cross hatched element in Figure 7.11. A total of two

elements were within twenty percent of reaching the

distortion limits. These are indicated as the less dense

cross hatched elements in Figure 7.11. Two taper ratios

of these elements were within the twenty percent margin.

Figure 7.11. The mesh of the upsetting billet at the
point of the fourth rezoning
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Figure B.13, Figure B.14, and Figure B.15, of I
Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the fourth 3
rezoning. Table B.5 of Appendix B contains a listing of

the strain jump values at the nodes of the elements 3
flagged for rezoning and those within twenty percent of

the rezoning indicator values.

Figure 7.12 illustrates the new mesh that was 3
created using the remeshing technique described in

Chapter 5. Twenty-eight elements were rezoned. No 3
elements or nodes were added and twenty-one nodes were

repositioned. The old mesh variables were automatically I
remapped via ABAQUS' remapping algorithm. 3

I
I
I

-- I

Figure 7.12. The mesh of the upsetting billet after
remeshing for the fourth rezoning 3
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The fifth rezone occurred at increment number five

after the fourth rezone with a total of 78.5 percent of

travel of the rigid die completed. One element exceeded

the rezoning indicator limits. This was a skew angle

violation. This element is shown as the dense double

cross hatched element in Figure 7.13. A total of four

elements were within twenty percent of reaching the

distortion limits. These are indicated as the less dense

cross hatched element in Figure 7.13. Three taper

ratios, and three skew angles of these elements were

within the twenty percent margin.

Figure 7.13. The mesh of the upsetting billet at the
point of the fifth rezoning
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Figure B.16, Figure B.17, and Figure B.18, found in 3
Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the fifth rezoning. 3
Table B.6 of Appendix B contains a listing of the strain

jump values at the nodes of the elements flagged for 3
rezoning and those within twenty percent of the iezoning

indicator values. I
Figure 7.14 illustrates the new mesh that was 3

created using the remeshing technique described in

Chapter 5. The entire mesh was totally rezoned to help 3
reduce future distortions. A total of one hundred and

seventy-nine elements and two hundred and six nodes are I
in the new mesh. The old mesh variables were 3
automatically remapped via ABAQUS' remapping algorithm. I

'I
I

Figure 7.14. The mesh of the upsetting billet after
remeshing for the fifth rezoning 3
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The sixth rezone occurred at increment number six

after the fifth rezone with a total of 89.4 percent of

travel of the rigid die completed. No elements exceeded

the rezoning indicator limits. A total of two elements

were within twenty percent of reaching the distortion

limits. These are indicated as the less dense cross

hatched elements in Figure 7.15. One taper ratio, and

one skew angle of these elements were within the twenty

percent margin.

I,

Figure 7.15. The mesh of the upsetting billet at the
point of the sixth rezoning

Figure B.19, Figure B.20, and Figure B.21, found in

Appendix B, art contour plots of effective plastic

strain, Mises stress, and strain energy density

3 respectively at the point flagged for the sixth rezoning.
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Table B.7 of Appendix B contains a listing of the strain 3
jump values at the nodes of the elements flagged for

rezoning and those within twenty percent of the rezoning

indicator values.

Figure 7.16 illustrates the new mesh that was

created using the remeshing technique described in 3
Chapter 5. A total of sixteen elements were rezoned. No

new elements were added to the mesh and twelve nodal I
positions were changed. The old mesh variables were 3
automatically remapped via ABAQUS' remapping algorithm. I

I

Figure 7.16. The mesh of the upsetting billet after I
remeshing for the sixth rezoning I

The seventh rezone occurred at increment number

three after the sixth rezone with a total of 94.5 percent

of travel of the rigid die completed. Three elements 3
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i exceeded the rezoning indicator limits. One taper ratio

violation, and two skew angle violations were detected.

These elements are shown as the dense double cross

3 hatched elements in Figure 7.17. No elements were within

twenty percent of reaching the distortion limits.I
I,I

Figure 7.17. The mesh of the u-setting billet at the
point of the seventh rezoning

I Figure B.22, Figure B.23, and Figure B.24, found in

3 Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the seventh

rezoning. Table B.8 of Appendix B contains a listing of

the strain jump values at the nodes of the elements that

were flagged for rezoning and those that were within
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tuanty percent of the rezoning indicator values. I
Figure 7.18 illustrates the new mesh that was

created using the remeshing technique described in

Chapter 5. A total of thirty-three elements were rezoned

with one new element added to the mesh. Twenty-nine new

nodal positions were created. The old mesh variables

were automatically remapped via ABAQUS' remapping

algorithm.

I
i
I

Figure 7.18. The mesh of the upsetting billet after
remeshing for the seventh rezoning

i
The solution after the seventh rezone ran to

completion in four more increments. The final mesh is i
depicted in Figure 7.19. Two elements just exceeded the

rezoning indicator values. Both of these violations were

skew angles. These are shown in Figure 7.19 as the dense
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double cross hatched elements. A total of two elements

were within twenty percent of reaching the distortion

limits. These are indicated as the less dense cross

hatched element in Figure 7.19. One taper ratio, and one

skew angle of these elements were within the twenty

* percent margin.

I
II

IB

Figure 7.19. The mesh of the upsetting billet at the
completion of the solution with seven rezonings

U Figure B.25, Figure B.26, and Figure B.27, of

* Appendix B, are contour plots of effective plastic

strain. Mises stress, and strain energy density

respectively at the completion of the solution. Table

B.9 of Appendix B contains a listing of the strain jump

values at the nodes of the elements exceeding and within

twenty percent of the rezoning indicator values.
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7.4 Cylindrical Rod - An Impact Problem

The second problem involves a cylindrical rod

impacting against a stationary smooth rigid surface.

This is a dynamic problem. The geometry of the model is I
identical to the first problem illustrated in Figure 7.1

except for the rigid dies. Problems similar to this have

been studied in the literature [11, 24, 56-60]. It can 3
be thought of as a simulation of a bullet striking a

rigid surface. This problem serves as an excellent study

for the rezoning of dynamic related problems which

involve large deformations and strains.

The material definition is identical to the first

example problem illustrated in Figure 7.2. The strain

rate dependence is more dramatic for this problem. 3
The finite element model is similar to the first

example problem except for the fact that one half instead I
of one quarter of the model was used due to different 3
symmetry conditions. This model initially contained one

hundred and thirty-three nodes and one hundred and eight 3
elements. The nodes along the vertical central axis are

constrained radially. The rigid surface is modeled as a I
flat smooth surface which is stationary. The cylindrical 3
rod has an initial velocity of 2,000 miles per hour or

894 meters per second. Impact speeds are large enough to 3
create large deformations and strains. Interface

1
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elements are used along the bottom edge of the rod

modeling the contact between the model and the rigid

surface. No frictional effects were included. The

finite element model is illustrated in Figure 7.20.

i B01 1807
7 1 170 170 1 70 170 5170

1701 1707

160 160 150 160
161 6 0 1 ) 1 60 7

150 1 60

1 5 01 , (> 15 07

I801 ,i )(
BOi

701 - 0 7

601 A 0 7

50 1- 0 6 507

401 - ) - - ) 407

301 305

301 ) " (307

201 202 205 206
201 7) 7

101 102 103 104 105 106

1 2 W 3 NW 5 ()6

Figure 7.20. Finite element model for the impacting
cylindrical rod problem
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7.5 Results of the Cylindrical Rod Problem I
The cylindrical rod impact problem was initially run

without any rezoning used. The problem ran to completion

in one hundred and thirty increments. The total time for I
the problem was one hundred microseconds. It should be

noted that a good number of increments and time elapsed

after the cylindrical rod had rebounded off the rigid

surface. Several millimeters of distance of rebound was

traveled prior to a total elapsed time of one hundred

microseconds.

Figure 7.21 contains the deformed mesh at solution

completion. Note that this would be in its rebounded

state. Deformations and hence the element distortions

may be slightly higher during impact. The difference

should be negligible in terms of distortion. All

elements that exceeded the distortion limits set by the I
rezoning indicators are shown with a dense double cross

hatched pattern. Thirty-five elements were flagged as

being too distorted. This is approximately 32.4 percent

of the total number of elements in the mesh. Two aspect

ratio violations, and thirty-three skew angle violations I
were detected by the rezoning indicators. Nine elements 3
fell to within twenty percent of the distortion limit

values. Of these values eight were skew angle values and

one was a taper ratio value that exceed the twenty

I
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percent margin. These elements are lightly cross hatched

in Figure 7.21.

Figure 7. 21. The mesh of the cylindrical rod at the
completion of impact for the nonrezoning case

Figure B.28, Figure B.29, and Figure B.30, found in

Appendix B, are contour plots of equivalent plastic

strain, Mises stresses, and strain energy density

respectively, for the completed solution of the

nonrezoning case. Table B.10 of Appendix B contains a

listing of the strain jump values at the nodes of the

elements that exceeded and were within twenty percent of

the rezoning indicator values.
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The problem was run again, this time using the

rezoning technique with eigenvalue test derived rezoning

indicators. A total of two rezones were required during

the solution process.

The first rezone occurred at increment number

eighteen with a total of 6.048 microseconds of time

elapsed. Two elements exceeded the rezoning indicator

limits. Two skew angle violations were detected. These I
elements are shown as the dense double cross hatched I
elements in Figure 7.22. A total of four elements were

within twenty percent of reaching the distortion limits.

These are indicated as the less dense cross hatched

elements in Figure 7.22. One taper ratio, and three skew I
angles of these elements were within the twenty percent

margin.

I

I

'I
I

Figure 7.22. The mesh of the cylindrical rod at the
point of the first rezoning
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Figure B.31, Figure B.32, and Figure B.33, found in

Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the first rezoning.

Table B.11 of Appendix B is a listing of the strain jump

values at the nodes of the elements that exceeded and

that were within twenty percent of the rezoning indicator

values.

Figure 7.23 illustrates the new mesh that was

created using the remeshing technique described in

Chapter 5. A total of fifty-two elements were remeshed.

No new elements or nodes were added to the mesh. Fifty-

Ifive nodal positions were changed. The old mesh

variables were automatically remapped via ABAQUS'

remapping algorithm.

I
I
I

I
Figure 7.23. The mesh of the cylindrical rod after
remeshing for the first rezoning
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The second rezone occurred at increment number I
twenty-three after thE first rezone with a total of

16.758 microseconds elapsed. Twenty-two elements

exceeded the rezoning indicator limits. One taper ratio

violation, and twenty-two skew angle violations were

detected. These elements are shown as the dense double

cross hatched elements in Figure 7.24. A total of

thirteen elements were within twenty percent of reaching I

the distortion limits. These are indicated as the less

dense cross hatched elements in Figure 7.24. Two aspect

ratios, three taper ratios, and nine skew angles of these

elements were within the twenty percent margin.

I
I
I
I
I
'I

Figure 7.24. The mesh of the cylindrical rod at the
point of the second rezoning 3
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Figure B.34, Figure B.35, and Figure B.36, found in

Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

respectively at the point flagged for the second

rezoning. Table B.12 of Appendix B contains a listing of

the strain jump values at the nodes of the elements that

exceeded and were within twenty percent of the rezoning

indicator values.

Figure 7.25 illustrates the new mesh that was

created using the remeshing technique described in

Chapter 5. A total of sixty-nine elements were remeshed.

No new nodes or elements were created in the new mesh.

Fifty-nine nodal positions were changed. The old mesh

variables were automatically remapped via ABAQUS'

remapping algorithm.

Figure 7.25. The mesh of the cylindrical rod after
remeshing for the second rezoning
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The solution after the second rezone ran to I
completion in sixty-four more increments for a final

elapsed time of one hundred microseconds. Three elements

were flagged by the rezoning indicators. Two exceeded

the aspect ratio limits and one exceeded the taper ratio

limits. In all three cases the values just exceeded the

rezoning indicator values. These elements are depicted

in Figure 7.26 as the dense double cross hatched I
elements. A total of thirteen elements were within

twenty percent of reaching the distortion limits. These

are indicated as the less dense cross hatched elements in

Figure 7.26. Two aspect ratios, eight taper ratios, and

seven skew angles of these elements were within the I
twenty percent margin.

_T!

- I I

I

Figure 7.26. The mesh of the cylindrical rod at the
completion of the solution with two rezonings
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I Figure B.37, Figure B.38, and Figure B.39, found in

Appendix B, are contour plots of effective plastic

strain, Mises stress, and strain energy density

j respectively at the completion of the solution. Table

B.13 of Appendix B contains a listing of the strain jump

values at the nodes of the elements that exceeded and

were within twenty percent of the rezoning indicator

values.

II
I
I
I
I
I
I
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CHAPTER 8

ANALYSIS OF RESULTS AND OBSERVATIONS

8.1 Self Adaptive Rezoning Indicators

The derivation of rezoning indicators by eigenvalue

testing quadrilateral elements and implementing the

results into Equation (4.10) and Equation (4.11) i
generates an effective means to examine the behavior of

geometrical distortions on the elements. The resulting

strain energy density ratio depicts the strain energy 3
content of an element over a given range of a distortion

measure. The ideal case provides a strain energy density

ratio of unit value. Departure from the ideal shape

tends to deviate the value from one. I
Deviation from a consistent pattern in the strain i

energy density ratios indicates a "departure from the

expected". This is exemplified in each distortion

measure that was studied. The "departure from the

expected" is illustrated as a discontinuity, a change in I
the direction of the radius of curvature, a change in

amplitude and frequency of the plotted values, or a quick

change in the slope of the plot. All plots, Figure 4.1 i

through Figure 4.36, exhibited at least one of these behaviors.

i
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As an element is distorted a departure from a unit

value of the strain energy density ratio is expected

since the results of a less ideal element will provide a

slightly less accurate solution. In this case, a

solution to the strain energy content of the element. A

departure from the expected pattern of deviation from the

unit value of strain energy density, as the distortion

measure is increased, indicates that the solution has

lost its reliability in providing accurate results. This

value is the limit to the distortion measure that can be

applied to an element before the errors tend to

dramatically increase and the solution for the distorted

element is no longer reliable. This limit of the

distortion measure is the rezoning indicator for that

measure.

In each case, the rezoning indicator values

determined in this investigation were within the expected

range of values that have been used to date for rezoning

and for mesh formulations in general [20, 27-31].

8.1.1 Eigenvalue Testing - Mathematical Derivation

Section 4.2.1 of Chapter 4 outlined the mathematical

derivation of rezoning indicators from a quadrilateral

element's stiffness matrix. The underlying mathematics

of rezoning indicators derived from eigenvalue tests is

built solidly upon existing mathematical formulations
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found within the finite element method. The only change i
is the incorporation of eigenvalues, eigenvectors, and a

load vector into one equation to formulate the strain

energy content of an element. This change, however, is a

valid means of deriving a measure of strain energy both

theoretically and mathematically. Since normalized

displacements are used instead of real displacements, the

true value of strain energy in the element is not i
obtained. An identical deformation pattern, however, is

established. This creates a strain energy value

proportional to the true strain energy content of the

element. This proportionality to the exact strain energy

value is sufficient to determine the effects of i
distortion on an element.

The stiffness matrix of the element is what defines

the capability of the element. Eigenvalue test derived

rezoning indicators are directly computed from the

stiffness matrix. The theoretical and mathematic nature i
of these rezoning indicators is therefore sound.

8.1.2 Eigenvalue Testing - Empirical Derivation

Large deformations and strains call for a finite i
strain element formulation. Under such conditions the

nature of the method is nonlinear. Rezoning indicators

derived from eigenvalue tests fall into this category. 3
No closed form mathematical solution exists. Nonlinear

I
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techniques must be employed.

In this investigation the solution to obtaining the

rezoning indicators was derived empirically using the

finite element code ABAQUS. Sufficient data points were

examined to define the nature of the strain energy

density ratio over a wide range of distortion measure

values. The spread in the data seemed not to inhibit the

determination of the rezoning indicators.

The empirical technique used is tedious in nature.

The manner in which the technique is applied allows one

to study just one type of element with specific material

properties. A generalization of the method to

incorporate all element types and material properties is

not possible, other than to gather data for each of the

possible cases. Data can, however, be gathered for the

more common type of elements and material models and

still have use in numerous types of applications. The

empirical technique does allow one to determine the

rezoning indicators for elements and materials that are

specific to a finite element code.

8.1.3 Aspect Ratio Rezoning Indicators

The aspect ratio rezoning indicator values as seen

in Table 4.1 come within the expected range given by the

general rule of thumb that has been to limit aspect

ratios to less than twenty to one. The values determined
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in this investigation are slightly lower. The lower I
values can be explained due to the fact that the rezoning

indicators are the points at which the error in the

solution begins to deviate drastically. Increasing the 3
value of the aspect ratio slightly above the value of the

rezoning indicator would still provide a reasonably

accurate result. Experience indicates that values

slightly higher than the rezoning indicator values for I
aspect ratio might still be useable. Derived rezoning 3
indicators and values determined by experience are

therefore in agreement. More accuracy and less problems I

in the solution will occur with the use of the derived

rezoning indicators. I
An interesting fact in deriving the rezoning

indicator values for aspect ratio is that the location

that specifies the value of the rezoning indicator in all 3
four plots, Figure 4.1 through Figure 4.12, tend to

correlate. This provides added assurance in the I
selection of these values.

8.1.4 Taper Ratio Rezoning Indicators

The taper ratio rezoning indicator values as seen in I
Table 4.1 come within the expected range give by the I

general rule of thumb that has been to limit taper ratios

to less than two to one. The values determined in this 3
investigation are slightly lower. The explanation for

I
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the lower values is identical to the argument given for

the aspect ratio. Derived rezoning indicators and values

determined by experience for taper ratio are therefore in

agreement. More accuracy and less problems in the

solution will occur with the use of the derived taper

ratio rezoning indicators.

The same interesting fact in deriving the rezoning

indicator values for aspect ratio exists for taper ratio.

The location that specifies the value of the rezoning

indicator in all four plots, Figure 4.13 through 4.24,

tend to correlate. This provides added assurance in the

selection of these values.

8.1.5 Skew Angle Rezoning Indicators

The skew angle rezoning indicator values as seen in

Table 4.1 come within the expected range given by the

general rule of thumb that has been limit skew angles to

less than one hundred and thirty degrees and greater than

fifty degrees. The values determined in this

investigation are within this range. An explanation

similar to that given for aspect ratio can also be

applied to the skew angle values. Derived rezoning

indicators and values determined by experience for skew

angles are therefore in agreement. More accuracy and

less problems in the solution will occur with the use of

the derived skew angle rezoning indicators.
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The location that specifies the value of the I
rezoning indicator in all four plot types, Figure 4.25

through Figure 4.36, tend to correlate. This adds

assurance in selecting these values. 3
8.2 Upsetting Billet Metal Forming Problem 3

The upsetting billet metal forming problem provided

an excellent study of the rezoning method. When the 3
model of this problem was run without rezoning, the

solution technique used was unable to complete the entire

solution process. Difficulties due to extreme 3
distortions and continued reduction in inciement size

caused the termination of the solution process. I
The problem was rerun using the rezoning technique 5

developed in this investigation. After the first

rezoning the solution ran to completion. This indicates 3
the power behind the rezoning method. Correction of

distorted elements helped to eliminate solution process I
difficulties. Additionally, increased accuracy to the

solution was obtained through proper rezoning. The

results of the solution indicate this. Comparison to 1
references cited in the literature which are similar in

nature to this problem is given in the next subsection. 3
This problem exhibited a behavior of distorting the

elements in the upper right hand corner of the mesh I
(Figure 7.3) to an extreme after only a couple of 3
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increments. This distortion was transferred through the

mesh along a diagonal to the opposite corner of the mesh.

This deformation behavior is what made this problem ideal

for rezoning. Continuous rezoning of the upper right

hand corner was required to obtain accurate results in

this region. The displacements, strains, and stresses in

this same region are of great importance to the analyst.

Seven rezonings achieved the improvement in accuracy in

the upper right hand corner as well as maintaining valid

elements throughout the other regions of the mesh.

Observation and examination of the shape and element

values of the finite element mesh, at each rezoning

point, indicates that the determination of the values for

rezoning indicators was appropriate. Higher or lower

values of rezoning indicators would allow for too much

distortion or not enough deformation capability. The

effect of too much distortion has already been explained.

Not enough deformation capability means that one must

rezonie the mesh more than is required. This causes an

increase in time and cost for the solution. The seven

rezonings required for this problem may seem like too

many, except that the problems associated with extreme

deformations occurring at the top right hand corner of

the mesh are overcome by the repeated rezonings. A few

of the elements in this region were continually

undergoing an extreme amount of distortion to the point
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of being inverted. The assumption of a perfectly rough i
die surface in contact with the model, created was the

factor which caused the extreme deformations at the upper

right hand corner of the mesh. U
8.2.1 Comparison to Similar Problems in the Literature

Several examples in the literature are similar in

nature to the example problem of the upsetting billet 3
[14, 15, 54, 55].

References [14, 15] contain examples of upsetting i
billet problems. In these problems the physical geometry

and material properties differ from the ones used in this

investigation. The rigid die was not extended past the 3
billet material, thus in the deformation of the billet

its material extruded upwards once it was past the edge i

of the die. The distortions in the elements, however,

tend to correlate with those seen in this investigation. i

The elements at or near the edge of the die tend to 3
distort the most, even to the point of becoming inverted. I

Rezoning was utilized for References [14, 15],

however, the problem was rezoned on regular intervals of I
percentage reduction in the height. What can be 3
extrapolated from these examples is the fact the

distortion patterns seen in the model and individual 3
elements is in overall agreement with the results of this

I
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investigation.

Reference [54] contained several examples of the

upsetting billet problem which had the same geometrical

shape, material properties, and loading characteristics

used in this investigation. No rezoning, however, was

utilized. Different types, and numbers of elements were

used in the various investigations. In general the

overall deformation patterns observed in this

investigation correlate to those of Reference [54]. The

same pattern of element distortion for the nonrezoning

case in this investigation compares overall equivalent to

that of Lippmann [54].

The final force required to achieve a sixty percent

reduction in height is 1430 kN for a viscous-plastic case

and 970 kN for a rigid-plastic case of Reference [54].

For this investigation a final force for the sixty

percent reduction in height was 1038 kN for the

nonrezoning case and 1029 kN for the rezoning case.

Comparison of the force values for the rezoning case, the

nonrezoning case, and from Reference [54] indicates that

there is agreement in results and illustrates the

improving effect rezoning has on the solution.

Reference [55] contained nearly the exact same

problem used in this investigation. Three cases were

examined. The first case included temperature effects

and used eight node quadratic ordered elements. Fewer
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elements in the mesh were used. No rezoning was applied. i
The die or rigid surface traveled to a full sixty percent

height reduction of the billet, however, the speed of

travel of the die was very slow. The final force for

this case was approximately 960 kN. Distortions in the

elements of the mesh for the final solution are quite 3
noticeable, but in line with the results of the

nonrezoning case of this investigation. i
The second case of Reference [55] is identical to i

the first case except the rate of the application of the

die was much faster. The final force was 1430 kN. It is 3
interesting to note that in this case the top surface of

the billet actually began to fold in on itself. This

occurred at the corner of an element that was extremely•3

distorted. The element was practically inverted. This

folding may have been induced by the distorted elements 3
in that region of the mesh. The distorted elements

created false strains and stresses in that region of the i
model.

The third case of Reference [55] was practically

identical to the problem used in this investigation 3
except reduced integration elements were used. Only one

rezoning was performed. No attempt to optimize the new

mesh in terms of future deformations was taken into

account. Elements within the mesh were far too distorted

before the rezoning occurred. The elements of the final 3
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mesh were also far too distorted. The final force to

achieve the sixty percent reduction in height was 800 kN.

This case, of all the references cited which contain

upsetting billet problems, came closest, overall, to the

model used in this investigation.

In the third case of Reference [55] the contours and

values of effective plastic strain were, in general,

equivalent to the contours and values obtained in the

example problem of this investigation. Differences in

the values and in the appearance of the contours was

manifested in the mesh regions which contained the most

distorted elements. This region is the top right hand

portion of the mesh. For the third case of Reference

[55], the extreme values and contours of effective

plastic strain were shifted downwards and to the left as

compared to the results of this investigation. The third

case contours seemed to be affected by the distorted

elements in the region of the upper right hand corner of

the mesh. A one hundred and twenty percent strain was

the peak strain value in this region for the third case

as compared to a one hundred and forty percent peak

strain value for the problem of this investigation. The

furthest right hand point in contact with the die surface

had an eighty percent strain for the third case and a

forty percent strain for the case of this investigation.

The strain gradients, of the two cases, across the top
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surface of the billet only differed as one approached the 3
upper right hand corner of the mesh, the mesh area

corresponding to the region of greatest element

distortion. The outside right hand edge of the mesh had 3
a sixty percent strain value for the third case as

compared to a twenty percent strain value for the problem 3
of this investigation.

The results of the problem used in this i
investigation seems to be in overall agreement with the i

references cited. The differences illustrate an

improvement in accuracy of the solution to the upper 3
right hand corner of the mesh due to the rezoning method

developed in this investigation. This rezoning method i
effectively dealt with the deformation difficulties

generated in the right hand corner of the mesh in order

to generate an accurate solution throughout the mesh. 3
The observations made concerning the performance of

the upsetting billet results for the references cited are i
equivalent to some of the observations that can be made

between the nonrezoning and rezoning cases studied in

this investigation. These similarities tend to validate 3
the effectiveness of the rezoning method and the

eigenvalue test rezoning indicators used within the 3
method. Since the nonrezoning case was similar to cases

in the literature, and an improvement was seen between i
the nonrezoning and rezoning cases, the assumption of the 3
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validity of the method of self adaptive rezoning using

the rezoning indicators, appears to be in order. The

improvement between the nonrezoning case and the rezoning

case of this investigation is examined in the following

subsections.

8.2.2 Comparison to a Nonrezoning Case

Figure 7.4 illustrates the deformations induced upon

the elements in the mesh for the nonrezoning case. Two

elements are inverted or near inversion. A good portion

of the mesh is flagged as being distorted or near the

distortion limits. Such results would not provide an

accurate solution.

Figure 7.19 illustrates the mesh of the same problem

near the same point in the solution as shown in Figure

7.4. In fact, this case is for the completed rezoned

solution. A few distortions in the upper right hand

corner are present. Upon examination of the values, the

distortions just exceeded the limits set by the rezoning

indicators. A solution for this case can definitely be

considered more accurate. Seven rezonings is not a high

price to pay for the increased accuracy and the

completion of the solution.

8.2.3 Comparison to Strain Jump Values

Strain jump values for the upsetting billet problem

are listed in Table B.1 through Table B.9 in Appendix B.
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Extreme jumps or discontinuities between the strain

values that occur at a given node shared by several

elements is indicative of inaccuracies in the solution.

Elements which connect to this node are providing quite

different results in strain for the same nodal position.

In some cases this can be expected where there exists a

steep gradient in the strain field. This can be a

natural tendency given the nature of the problem. In I
cases of constant strain this would not be expected. i

In the upsetting billet problem strain jumps were

relatively high in the regions of large deformations.

This is expected since the model undergoes a sixty

percent reduction in height. Upon comparison of the 3
strain jump values for the non rezoning case (Table B.1)

to those for the rezoning case (Table B.2 through Table

B.9) one finds that the values for the nonrezoning case 3
can be an order of magnitude higher. This is drastic for

the strain values under consideration. Comparison of the i
final solution for the nonrezoning and rezoning cases

indicate a factor of about five in difference between

maximum strain jump values. Values of large strain jumps 3
correspond nicely with regions of the mesh which are

flagged for rezoning. Slightly less values are noticed 3
in regions of the mesh which are within twenty percent of

reaching the rezoning indicator limits. I
i
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8.2.4 Comparison to Equivalent Plastic Strain Values

Figures B.l, B.4, B.7, B.10, B.13, B.16, B.19, B.22,

and B.25 in Appendix B are contour plots of the

equivalent plastic strain for the upsetting billet

problem. These contour plots provide a visual comparison

of the mesh for regions of steep gradients of equivalent

plastic strain. Regions of steep gradients would be

indicative of large deformations confined to a small

region. They could also be considered regions of

discontinuities in the solution values and hence

inaccurate results.

Visual examination of the rezoning contour plots

seem to indicate smooth transitions of strain throughout

the mesh rising to peak values in the critical regions.

Elements flagged for rezoning occurred only within the

regions of steep gradients. The smoothness of the

contours is indicative of an accurate solution.

Comparison of the final meshes of the nonrezoning to

rezoning cases illustrates the difference in strain

values obtained. Some of the contour shapes and most of

the peak strain values differ. This is indicative of an

improvement in the solution caused by rezoning.

Selection of rezoning indicators would also appear

appropriate.
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8.2.5 Comparison to Mises Stress Values

Figures B.2, B.5, B.8, B.11, B.14, B.17, B.20, B.23,

and B.26 in Appendix B are contour plots of Mises stress I
values for the upsetting billet problem. These contour

plots provide a visual inspection of the mesh for regions

of steep gradients of Mises stress. Regions of steep 3
gradients could be indicative of discontinuities in

solution values and hence inaccurate results. I
Visual examination of the rezoning contour plots 3

seems to indicate smooth transitions of stress throughout

the mesh rising to peak values in the critical regions. 3
Rezoning the distorted elements ironed out the regions of

steep gradients. The smoothness of the contours is I
indicative of an accurate solution qhich in part is due 3
to the rezoning process.

Comparison of the final meshes of the nonrezoning to 3
rezoning cases illustrates the difference in strain

values obtained. Some of the contour shapes and most of I
the peak stress values differ. The contours of the

nonrezoning case appear to be erratic in nature. This is

indicative of errors in the solution. The rezoning case i

is much smoother. This is indicative of an improvement

in the solution caused by the rezoning. Selection of 3
rezoning indicators would also appear appropriate.

I
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8.2.6 Comparison to Strain Energy Density Values

Figures B.3, B.6, B.9, B.12, B.15, B.18, B.21, B.24,

and B.27 in Appendix B are contour plots of strain energy

density for the upsetting billet problem. These contour

plots provide a visual inspection of the mesh for regions

of steep gradients of strain energy density. These

regions of steep gradients could be indicative of large

deformations and strains as well as the expenditure of

energy confined to a small region. They could also be

considered regions of discontinuities in solution values

and hence inaccurate results.

Visual examination of the rezoning contour plots

seems to indicate smooth transitions of strain throughout

the mesh rising to peak values in the critical regions.

Elements flagged for rezoning occurred only within the

regions of steep gradients. The smoothness of the

contours is indicative of an accurate solution.

Comparison of the final mesh of the nonrezoning to

rezoning case illustrates the difference in strain energy

density values obtained. Some of the contour shapes and

most of the peak strain energy density values differ.

The location of the highest strain energy density values

occurs at the correct spot in the rezoning case where it

is shifted to the left for the nonrezoning case. This

shift to the left lies in the region of the inverted

elements thus giving rise to false values. These
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differences are indicative of an improvement in the 3
solution caused by the rezoning. Selection of rezoning

indicators would also appear appropriate.

8.3 Impacting Cylindrical Rod Problem U
The impacting cylindrical rod problem provided an 3

excellent study of the rezoning method for a dynamic

problem. The problem is essentially identical to the U
upsetting billet problem except no rigid die is creating 3
the deformation. The velocity of the object at impact to

a rigid surface causes the deformation of the body. This 3
problem allows for the comparison and verification of the

self adaptive rezoning method and rezoning indicators i
derived from eigenvalue tests, that were developed in 3
this investigation, for a dynamic problem. For the

nonrezoning case the problem was able to run to 3
completion. Using the rezoning technique of this

investigation the problem was run to completion with two I
rezonings. This indicates that the distortions for this

problem were not as extreme as seen in the upsetting

billet problem. The assumption of a rigid die with 3
perfect friction, caused the extreme distortions in the

upsetting billet problem. In this problem no friction 3
was assumed, thus allowing the deforming elements to

slide along the rigid surface. It is interesting to note

that this creates larger aspect ratios in the distorted 3
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elements. The upsetting billet problem caused mainly

skew angle distortions with a few taper ratio

distortions. In the impacting cylindrical rod problem

the element distortions were aspect ratio, taper ratio,

and skew angle. Skew angle distortions seem to appear in

all cases. The nature of this problem allowed for the

examination of large aspect ratio values not seen in the

upsetting billet problem.

This problem exhibited a behavior of distorting the

elements in the lower portion of the mesh (Figure 7.4) to

an extreme in the first two or three microseconds of

elapsed time. This distortion was caused by stopping the

momentum of the object near its base by the rigid

surface. The elements above this region continued on the

downward travel causing the lower elements of the mesh to

become distorted. At some time increment, the lowest

portion of the body actually began to rebound from the

surface to cause additional deformation in these lower

regions. The incompressible nature of the elements in

plastic deformation allowed the mesh to be pushed out and

curled up at the lower right had corner of the mesh

(Figure 7.21). This deformation behavior is what made

this problem ideal for rezoning.

Rezoning of the lower portion of the mesh was

required to obtain accurate results in the region.

Displacements, strains, and stresses in this region are
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considered important to the analyst. Two rezonings

achieved the improvement in accuracy to the lower mesh

region as well as maintaining valid elements throughout i
the other regions of the mesh.

By comparison of the shape and element values of the

finite element mesh, at each rezoning point, it was

judged that the selection of the rezoning indicator

values was appropriate. Higher or lower values of i
rezoning indicators would allow for too much distortion

or not enough deformation capability. These effects have

already been explained. The two rezonings required for 3
this problem shows how a little effort in correction of

distorted elements can increase the accuracy of the i
results. For many similar problems which require 3
rezoning, only a few rezonings would be necessary.

8.3.1 Comparison to Similar Problems in the Literature U
Several examples in the literature are similar in i

nature to this example problem of an impacting

cylindrical rod [11, 24, 56-60].

References [56, 58, 59] contain early examples of

tests and studies of the plastic behavior of materials i
which were examined using impacting cylindrical rods. i

The materials used, geometries, and impacting conditions

varied. None of the cases exactly matched the one used

in this investigation. The finite element method did not

I
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exist at the time References [56, 58, 59] were written.

No direct comparisons to the model used in this

investigation can be made.

Reference [57] is a study of soft-body impact. An

example of an impacting cylindrical rod to a rigid

surface was examined. The final deformation shape of the

mesh is very similar to the shape observed in this

investigation. In this reference, however, the material

was modeled as a gelatin substance and the impacting

velocities were quite a bit smaller. The model also used

three dimensional elements. No direct comparisons are

legitimate other than the similarities in overall shape

of the deformation.

In Reference [11] a cylindrical rod was impacted

against a thick flat plate. Velocities were on the same

order of magnitude as used in this investigation.

Different geometries, materials, and element types were

used. Triangular elements were used. A rezoning process

was incorporated into the solution process. The results

of the problem seem to be excellent for triangular

elements. No comparisons can be made other than to note

that the overall deformation was similar. Since this

model struck a flat plate instead of a rigid surface this

created a slightly different problem. It is interesting

to note that the curling of the material at the outer

edge of the model also occurred in this model.
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The model used in Reference [24] is much similar to 3
the model used in this investigation. The geometries and

material properties differ, but in both problems the I
cylindrical rod strikes a rigid surface. The overall 3
deformation patterns of both are similar. The

deformation of the elements in the lower portion of the 3
mesh is equivalent in both models. The strain gradients

also appear to be equivalent given the differences I
between the models. The initial velocity prior to impact 3
for Reference [24] is 227 meters per second, about one

fourth the value used in this investigation. 3
Reference [60] studied the dynamic yield point of

materials by impacting cylindrical rods to a rigid I
surface and correlated the results to finite element

models. A variety of dimensions and materials were used.

The finite element models used in Reference [60] were in

agreement with the actual test data of the impacting

cylindrical rods. It is interesting to note that overall I
mesh shapes of the models, including shapes of the

elements, is very similar to the results of this

investigation. An interesting case study within 3
Reference [60] was an impact case where the outer edges

of the rod began to curl upward. This was demonstrated

in the model used in this investigation. Contours of

plastic strain also seemed to be comparable. I
No detailed comparisons of the impacting cylindrical 3
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rod used in this investigation to those cited in the

literature can be made due to the differences in the

models and test conditions. A general overall comparison

has been established. This helps to validate the use of

the rezoning method and rezoning indicators derived from

eigenvalue tests developed in this investigation. Actual

test data or another validated finite element models

would be required to make a detailed comparison of the

effectiveness of the rezoning method used in this

investigation.

8.3.2 Comparison to a Nonrezonin Case

Figure 7.21 illustrates the deformations induced

upon the elements in the mesh for the nonrezoning case.

Almost the entire lower portion of the mesh is flagged as

being distorted or near the distortion limits. Such

results would not provide an accurate solution.

Figure 7.26 illustrates the mesh of the same problem

at the same point in the solution as shown in Figure

7.21. This case is for the completed solution using

rezoning. A few distortions are present. Upon

examination of the values, the distortions just exceeded

the limits set by the rezoning indicators. A solution

for this case can definitely be considered more accurate.

Two rezonings is not a high price to pay for the

increased accuracy and the completion of the solution.
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8.3.3 Comparison to Strain Jump Values

Strain jump values for the impacting cylindrical rod

problem are listed in Table C.1 through Table C.4 in

Appendix C. Extreme jumps or discontinuities between the

strain values that occur at a given node shared by

several elements is indicative of inaccuracies in the

solution. Elements which connect to this node are

providing quite different results in strain for the same I
nodal position. In some cases this can be expected where

a steep strain gradient exists. A steep strain gradient

is a natural tendency given the nature of the problem.

In cases of constant strain this would not be expected.

In this problem strain jumps were relatively high in i
the regions undergoing large deformations. This is

expected since the model undergoes quite a bit of

deformation in the lower 'egion. Upon comparison of the

strain jump values for the non rezoning case (Table C.1)

to those for the rezoning case (Table C.2 through Table I
C.4) one finds that the values for the nonrezoning case

can be an order of magnitude higher. This is drastic for

the strain values under consideration. Comparison of the 3
final solution for the nonrezoning and rezoning cases

indicate a factor of about five in difference between

maximum values Values of large strain jumps correspond

nicely with regions of the mesh which are flagged for I
rezoning. Slightly less values are noticed in regions of
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the mesh which are within twenty percent of reaching the

rezoning indicator limits.

8.3.4 Comparison to Equivalent Plastic Strain Values

Figures C.I, C.4, C.7, and C.10 in Appendix C are

contour plots of equivalent plastic strain for the

impacting cylindrical rod problem. These contour plots

provide a visual inspection of the mesh for regions of

steep gradients of equivalent plastic strain. These

regions of steep gradient could be indicative of large

deformations confined to a small region. They could also

be considered regions of discontinuities in solution

values and hence inaccurate results.

Visual examination of the rezoning contour plots

seems to indicate smooth transitions of strain throughout

the mesh rising to peak values in the critical regions.

Elements flagged for rezoning occurred only within the

regions of steep gradients. The smoothness of the

contours is indicative of an accurate solution.

Comparison of the final mesh of the nonrezoning case

to the rezoning case illustrates a few minor differences

in strain values. Some of the contour shapes and peak

strain values differ. This is indicative of an

improvement in the solution caused by the rezoning. The

slight difference as compared to the more extreme

differences of the upsetting billet problem is indicative
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of the need for only two rezonings. Selection of

rezoning indicators also appears to be appropriate.

8.3.5 Comparison to Mises Stress Values

Figures C.2, C.5, C.8, and C.1 in Appendix C are

contour plots of Mises stress values for the impacting

cylindrical rod problem. These contour plots provide a

visual inspection of the mesh for regions of steep

gradients of Mises stress. These regions of steep

gradients could be indicative of discontinuities in

solution values and hence inaccurate results.

Visual examination of the rezoning contour plots

seems to indicate smooth transitions of stress throughout

the mesh rising to peak values in the critical regions.

The smoothness of the contours is indicative of an

accurate solution.

Comparison of the final mesh of the nonrezoning to

the rezoning case illustrates slight differences in

stress values obtained. Some of the contour shapes and

peak stress values differ. Once again the fact that only

two rezonings were required accounts for the less

dramatic difference. The rezoning case does cause U
improvement in the solution. Selection of rezoning

indicators would also appear appropriate.
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8.3.6 Comparison to Strain Energy Density Values

Figures C.3, C.6, C.9, and C.12 in Appendix C are

contour plots of strain energy density for the impacting

cylindrical rod problem. These contour plots provide a

visual inspection of the mesh for regions of steep

gradients of strain energy density. These regions of

steep gradients could be indicative of large deformations

and strains as well as expenditure of energy confined to

a small region. They could also be considered regions of

discontinuities in solution values and hence inaccurate

results.

Visual examination of the rezoning contour plots

seems to indicate smooth transitions of strain energy

density throughout the mesh rising to peak values in the

critical regions. The smoothness of the contours is

indicative of an accurate solution.

Comparison of the final mesh of the nonrezoning case

to the rezoning case illustrates the difference in strain

energy density values obtained. The contour patterns and

peak strain energy density values differ. The location

of the steepest gradients of strain energy density occurs

at the point of extreme element distortion in the

nonrezoning case. These steep gradients are indicative

of inaccuracies in the solution cause by distorted

elements. Selection of rezoning indicators with regards

to this problem would appear to be appropriate.
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8.4 Mesh Manipulations

Rezoning can be summed up as a manipulative

procedure on the finite element mesh to improve upon the

accuracy and solution process. The mesh must first be I
examined. In this investigation a computer program

accomplishes this quite efficiently. The mesh must then

be remeshed or a new mesh created. This is a key part of

the rezoning process. The new mesh in essence, is

representative of the amount of improvement in the i
solution due to rezoning. The validity of the new mesh

is closely tied to the remapping of element variables i

from the old mesh.

8.4.1 Finite Element Mesh Inspection

The finite element mesh inspection computer program

is listed in Appendix A. This computer program performed 3
exceptionally well in determining the maximum or minimum

values of the geometrical measures of aspect ratio, taper i
ratio, and skew angle. The rezoning indicator values

provided the means to flag each element of the mesh that

exceeded the distortion limits set by the rezoning

indicators.

The computer program requires node and element input

files at each increment or time step in the solution

process. It performs a quick check on the finite element i
mesh and determines the geometrical measures of each n
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element and compares this value to the rezoning indicator

values. This program can be easily incorporated into a

finite element code so that the mesh checking procedure

is automatically made at each time step or increment.

This permits prompt rezoning leading to increased

solution accuracy.

This mesh inspection program is limited to linear

four node quadrilateral elements. The basic ideas

incorporated into the program could be extended to second

order eight node quadrilateral elements or to other types

of elements as well. Several modifications would have to

be incorporated which are dependent upon the differences

of the other type of element being examined.

8.4.2 Remeshing Technique

The remeshing technique used in this investigation

is based upon user intervention. The user must examine

the rezoning indicator information and determine how to

create a new valid and well shaped mesh required for the

rezoning process. This is not an extremely difficult

task if one uses a computer aided design package or a

finite element pre and post processor to help create the

new mesh. The information generated by the rezoning

indicators for increments or time steps prior, after, and

at the point of rezoning aid the analyst in deciding

where and how to remesh. This process was followed in
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this investigation.

The remeshing process seemed to work well given a

few iterations on each new mesh created. It proved,

however, to be a tedious and labor intensive process. It

was also subject to error due to the human intervention

required. The automation of this process would require

an expert system or some type of artificial intelligence

to incorporate the decision making process of the i
analyst. Meshing techniques would have to be

incorporated that can generate the desired meshes based

upon the decisions arrived at by the expert system. With

the derivation of the rezoning indicators, the only major

obstacle in developing a self adaptive rezoning algorithm I
is the development of this remeshing expert system. 3
8.4.3 Remapping Technique

The remapping technique used in this investigation I
is the algorithm which is part of the finite element code

ABAQUS. ABAQUS' code contains an interactive rezoner

which has an automatic remapping of solution variables to

the new mesh. The technique is an adequate remapper for

a self adaptive rezoning algorithm. The only fault was I
that the automatic remapping was not applied to dynamic

related quantities such as velocities. An independent

interpolation method was used to interpolate velocities 3
to the new mesh for dynamic problems.

I
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8.5 Recommendations

In order to create an automatic self adaptive

rezoner one must first develop an automatic remesher.

Development of such a remesher requires an expert system

based on the rezoning indicators and the self adaptive

rezoning procedure. Various mapping and mesh creation

techniques would be required for it to be universal in

nature.

Further verification and correlation of the rezoning

indicators must be accomplished. This would provide a

solid foundation for using the rezoning indicators in the

self adaptive rezoning algorithm. Further correlation

with additional example problems which vary in

application, loading and model description will help to

build this foundation. Correlation with empirical tend

to further establish the validity of the techniques used.

Deriving rezoning indicators for other types and orders

of elements, as well as using various material models

will help to solidify the approach taken. Derivation of

the rezoning indicators by the eigenvalue testing method,

however, must be used in order to properly correlate the

differences in element types and orders as well as

material models, for added validation to the approach

taken to quantify rezoning indicator values developed in

this investigation.
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MESH EXAMINATION COMPUTER PROGRAM

The following computer program is used to examine

the finite element mesh at each time step or increment in

the solution process. It computes the maximum aspect

ratio, minimum taper ratio, and the maximum and minimum

skew angles for each quadrilateral element.

A file is created which lists the aspect ratios,

taper ratios, and skew angles for all the elements. A

flag is set for each element which violates any one of

the rezoning indicators and the flag appears in the

column associated with the type of distortion. The

integer number one indicates that an element is flagged

for rezoning while a zero means that no geometrical

measures have exceeded the rezoning indicator values.

The program also determines if an element has coincident

nodes and if the element has become inverted.

The program is written in fortran and could easily

be integrated into a self adaptive rezoning algorithm.

The program is valid for the examination of finite

element meshes which only contain four node quadrilateral

elements. An element and a node file must be supplied to

the program under the names of elements.txt and nodes.txt

respectively. Examples of these files are also included.
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cI
CI

C THIS PROGRAM DETERMINES THE GEOMETRICAL SHAPE
C CONDITIONS OF THE ELEMENTS IN THE MESH. EACH
ELEMENT C IS EXAMINED AND THE ELEMENTS WHICH ARE
FOUND TO BE
C GEOMETRICALLY DISTORTED ARE FLAGED AS CANDIDATES
FOR
C REZONING.
C
C READ NODE AND ELEMENT LISTS AND ENTER THE LISTS
INTO
C TWO ARRAYS NAMED NODE(I,J) AND ELM(I,J).
C

INTEGER ELM(500,4),ELMFLAG(500,9),IDNODE(500)
INTEGER IDELM(500)
REAL NODE(500,2),VALAR(500),VALTR(500),VALSKL(500)
REAL VALSKU(500)
INTEGER FLAGAR,FLAGTR,FLAGVT,FLAGCN,FLAGTH,FLAGCL
INTEGER ELMID,COIN12,COIN13,COINI4,COIN23,COIN24
INTEGER COIN34
INTEGER FLAGSU,FLAGSL,FLAGSK
WRITE(*,*) 'STARTING PROGRAM GEOMETRY'
PI=3.141592654

C
C ENTER THE TYPE OF ELEMENT AND DETERMINE LIMIT VALUES

C FOR DISTORTION CASES AR, TR, SK
C

WRITE(*,*) 'ENTER THE TYPE OF ELEMENT'
WRITE(*,*) '(1) 4 NODE AXISYMMETRICAL

QUADRILATERAL'
WRITE(*,*) '(2) 4 NODE PLANE STRAIN QUADRILATERAL'
WRITE(*,*) '(3) 4 NODE PLANE STRESS QUADRILATERAL'
READ(*,*) ITYPE
IF (ITYPE .EQ. 1) THEN

ARLIM=18.37837
TRLIM=0.549424
SKLLIM=50.0
SKULIM=130.0

END IF
IF (ITYPE .EQ. 2) THEN

ARLIM=18.59468
TRLIM=0.579587
SKLLIM=42.99092
SKULIM=137.00908

END IF
IF (ITYPE .EQ. 3) THEN

ARLIM=16.79966
TRLIM=0.630321
SKLLIM=51.9744
SKULIM=128.0256

END IF
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C
C READ DATA FROM NODE AND ELEMENT FILES
C

OPEN(501,FILE='NODES.TXT',STATUS='OLD')
WRITE(*,*) 'BEFORE FIRST DO AND AFTER FISRT OPEN'
DO 10 I=1, 500

WRITE(*,*) 'I=',I
READ(501,*,END=11) IDNODE(I),NODE(I,1),NODE(I,2)
I NODE= INODE+ 1

10 CONTINUE
11 CONTINUE

C 11 FORMAT(1X,I2,F4.1,F4.1,F4.1)
CLOSE(501,STATUS='KEEP')
WRITE(*,*) 'FIRST FILE CLOSED ABOUT TO OPEN SECOND'
OPEN(502,FILE='ELEMENTS.TXT',STATUS='OLD')
WRITE(*,*) 'ENTERING SECOND DO LOOP'
DO 12 I=1,500

WRITE(*,*) 'I=',I
READ(502,*,END=16)IDELM(I),ELM(I,1),

+ ELM(I,2) ,ELM(I,3) ,ELM(I,4)
IELM=IELM+1

12 CONTINUE
16 CONTINUE

CLOSE(502,STATUS='KEEP')
C
C WRITE OUT NUMBER OF NODES AND ELEMENTS
C

WRITE(*,*) 'INODE=',INODE
WRITE(*,*) 'IELM=',IELM

C
C PRINT OUT NODE AND ELEMENT LISTS TO VERIFY METHOD
C

WRITE(*,*) 'BEFORE PRINT OUT OF LISTS'
DO 13 I=1,INODE

WRITE(*,*) 'IDNODE=',IDNODE(I)
WRITE(*,*) 'NODE2=' ,NODE(I,1)
WRITE(*,*) 'NODE3=' ,NODE(I,2)
WRITE(*,*) 'IDELEM=',IDELM(I)
WRITE(*,*) 'ELEM1=' ,ELM(I,1)
WRITE(*,*) 'ELEM2=' ,ELM(I,2)
WRITE(*,*) 'ELEM3=' ,ELM(I,3)
WRITE(*,*) 'ELEM4=' ,ELM(I,4)

13 CONTINUE
C
C LOOP OVER EACH ELEMENT
C

DO 14 J=1,IELM
C
C COMPUTE EACH ELEMENTS NODE COORDINATES
C

ELMID=IDELM(J)
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NODE1=ELM(J, 1)1
NODE2-=ELM(J, 2)
NODE3=ELM(J, 3)
NODE4=ELM(J, 4)

DO 83 K1=1,INODE
IF (IDNODE(K1) .EQ. NODEl) THEN

XN1=NODE(K1, 1)

YN1=NODE(K1, 2)I
END IF
IF (IDNODE(K1) .EQ. NODE2) THEN

XN2=NODE(K1, 1)I
YN2=NODE(K1, 2)

END IF
IF (IDNODE(K1) .EQ. NODE3) THEN

XN3=NODE (K1, 1)I
YN3=NODE(K1, 2)

END IF

IF (IDNODE(K1) .EQ. NODE4) THENI
XN4=NODE(K1, 1)
YN4=NODE(K1, 2)

END IF

83 CONTINUE
C
C WRITE OUT EACH OF THE VALUES AS A CHECK
CI

WRITE(*,*) 'ELMID=',ELMID
WRITE(*,*) 'NODE1=',NODE1

WRITE(*,*) 'NODE2=',NODE2I
WRITE(*,*) 'NODE3=',NODE3
WRITE(*,*) 'NODE4=',NODE4
WRITE(*,*) 'XN1=',XN1WRITE*,*)'XN2',XI
WRITE(*,*) 'XN2=',XN2
WRITE(*,*) 'XN3=',XN3
WRITE(*,*) 'XN4=',XN4

WRITE(*,*) 'YN1=',YN1
WRITE(*,*) 'YN2=',YN2
WRITE(*,*) 'YN3=',YN3

C DETERMINE IF ANY ELEMENT NODE POINTS ARE COINCIDENT

IF ((XN1 .EQ. XN2) .AND. (YN1 .EQ. YN2)) THENI
COIN12=1

ELSE

COIN12=O
END IF
IF ((XN1 .EQ. XN3) .AND. (YN1 .EQ. YN3)) THEN

COIN13=1

ELSE
COIN13=O

END IFI
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IF ((XN1 .EQ. XN4) .AND. (YN1 .EQ. YN4)) THEN
COIN14=1

ELSE
COIN14=O

END IF
IF ((XN2 .EQ. XN3) .AND. (YN2 .EQ. YN3)) THEN

C01N23=1
ELSE

C01N23=0
END IF
IF ((XN2 .EQ. XN4) .AND. (YN2 .EQ. YN4)) THEN

C01N24=1
ELSE

CO1N24=0
END IF
IF ((XN3 .EQ. XN4) .AND. (YN3 .EQ. YN4)) THEN

C01N34=1
ELSE

Co IN 34 =0
END IF
FLAGCN= 0
IF (COIN12 .EQ. 1) THEN

FLAGCN= 1
END IF
IF (COIN13 .EQ. 1) THEN

FLAGCN= 1
END IF
IF (COIN14 .EQ. 1) THEN

FLAGCN= 1
END IF
IF' (C01N23 .EQ. 1) THEN

FLAGCN= 1
END IF
IF (C01N24 .EQ. 1) THEN

FLAGCN= 1
END IF
IF (C01N34 .EQ. 1) THEN

FLAGCN= 1
END IF

C
C WRITE OUT COINCIDENT ELEMENT NODE POINT FLAGS
C

WRITE(*,*) 'COIN12=' ,COIN12
WRITE(*,*) 'COIN13=' ,COIN13
WRITE(*,*) 'COIN14=' ,COIN14
WRITE(*,*) 'C01N23=' ,C01N23
WRITE(*,*) 'C01N24=' ,C01N24
WRITE(*,*) 'C01N34=' ,C01N314
WRITE(*,*) 'FLAGCN' ,FLAGCN

C
C WRITE OUT IF WE HAVE A COINCIDENT NODAL POINT AND
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C SKIP TO THE NEXT ELEMENT3
C

IF (FLAGCN .EQ. 1) THEN
WRITE(*,*) 'A COINCIDENT NODE FOR

ELEMENT' ,ELMID
GOTO 17

C END IF3

C COMPUTE THE EDGE VALUES

C

EDGEA=SQRT((XN2-XN1)*(XN2-XN1)+(YN2-YN1)*(YN2-YN1))

EDGEB=SQRT((XN3-XN2)*(XN3-XN2)+(YN3-YN2)*CYN3-YN2))3

EDGEC=SQRT( (XN4-XN3)*(XN4-XN3)+(YN4-YN3)* (YN4-YN3))

EDGED=SQRT((XN1-XN4)*(XN1-XN4)+(YN1-YN4)*(YN1-YN4))I
C
C WRITE OUT THE EDGE VALUES

WRITE(*,*) 'EDGEA=',EDGEA
WRITE(*,*) 'EDGEB=',EDGEB
WRITE(*,*) 'EDGEC=',EDGEC
WRITE(*,*) 'EDGED=',EDGEDI

C
C COMPUTE ALL POSSIBLE ASPECT RATIOS

C IDGAEDE
RAB=EDGEA/EDGEB
RAD=EDGEA/EDGED
RCB=EDGEC/EDGEB

RBA=EDGEB/EDGEA
RBC=EDGEB/EDGEC
RDA= EDGED/EDGEAI
RDC=EDGED/EDGEC

C
C WRITE OUT POSSIBLE ASPECT RATIO VALUES3
C

WRITE(*,*) 'RAB=',RAB
WRITE(*,*) 'RAD=',RAD
WRITE(*,*) 'RCB=',RCBI
WRITE(*,*) 'RCD=',RCD
WRITE(*,*) 'RBA=',RBA
WRITE(*,*) 'RBC=',RBC
WRITE(*,*) 'RDA=',RDAI
WRITE(*,*) 'RDC=',RDC

C

C DETERMINE LARGEST ASPECT RATIO AND SET FLAGS
C

AR=RABI
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IF (RAD -GT. AR) THEN
AR=RAD

END IF
IF (RCB GT. AR) THEN

AR=RCB
END IF
IF (RCD GT. AR) THEN

AR=RCD
END IF
IF (RBA GT. AR) THEN

AR=RBA
END IF
IF (RBC GT. AR) THEN

AR=RBC
END IF
IF (RDA GT. AR) THEN

AR=RDA
END IF
IF (RDC GT. AR) THEN

AR=RDC
END IF
IF (AR .GE. ARLIM) THEN

FLAGAR=1
ELSE

FLAGAR=0
END IF

C
C WRITE OUT LARGEST ASPECT RATIO AND ITS FLAG VALUE
C

WRITE(*,*) 'AR=',AR
WRITE(*,*) 'FLAGAR=',FLAGAR

C
C COMPUTE ALL POSSIBLE TAPER RATIOS
C

RAC=EDGEA/EDGEC
RCA=EDGEC/EDGEA
RBD=EDGEB/EDGED
RDB=EDGED/EDGEB

C
C WRITE OUT POSSIBLE TAPER RATIO VALUES
C

WRITE(*,*) 'RAC=',RAC
WRITE(*,*) 'RCA=',RCA
WRITE(*,*) 'RBD=',RBD
WRITE(*,*) 'RDB=',RDB

C
C DETERMINE SMALLEST TAPER RATIO AND SET FLAGS
C

TR=RAC
IF (RCA .LT. TR) THEN

TR=RCA
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END IF3
IF (RBD .LT. TR) THEN

TR=RBD
END IF
IF (RDB .LT. TR) THEN

TR=RDB
END IF
IF (TR .LE. TRLIM) THENI

FLAGTR= 1
ELSE

FLAG TR= 0
END IF

C
C WRITE OUT SMALLEST TAPER RATIO AND ITS FLAG VALUE3
C

WRITE(*,*) 'TR=',TR

WRITE (*, *) 'FLAGTR=' ,FLAGTR

C CALC CROSS PRODUCT TO DETERMINE INVERTED ELEMENTS
C

V12X23=(XN2-XN1)*(YN3-YN2)-(YN2-YN1)*(XN3-XN2)
V23X34=(XN3-XN2)*(YN4-YN3)-(YN3-YN2)*(XN4-XN3)
V34X41=(XN4-XN3)*(YN1-YN3)-(YN4-YN3)*(XN1-XN4)
V41X12=(XN1-XN4)*(YN2-YN1) -(YN1-YN4)*(XN2-XN1)

C WRITE OUT VALUES OF CROSS PRODUCTS
C

WRITE(*,*) 'V12X23=' ,V12X23I
WRITE(*,*) 'V23X34=' ,V23X34
WRITE(*,*) 'V34X41=',V34X41
WRITE(*,*) 'V41X12=',V41X12C ST FAGSFO CRSS ROUCT THT I FR IVERIO

C

IF (V12X23 .LE. 0.0) THENI
INVRT2=1

ELSE
INVRT2=0

END IF
IF (V23X34 .LE. 0.0) THEN

INVRT3=1
ELSEa

I NYRT 3 =0
END IF

IF (V34X41 .LE. 0.0) THENI
INVRT4=1

ELSE
INVRT4=03

END IF
IF (V41X12 .LE. 0.0) THEN

INVRT1=13
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ELSE
INVRT1=O

END IF
FLAG VT= 0
IF (INVRT1 .EQ. 1) THEN

FLAG VT= 1
END IF
IF (INVRT2 .EQ. 1) THEN

FLAG VT= 1
END IF
IF (INVRT3 .EQ. 1) THEN

FLAG VT= 1
END IF
IF (INVRT4 .EQ. 1) THEN

FLAG VT= 1
END IF

C
C WRITE OUT FLAGS FOR ELEMENT INVERSION
C

WRITE (*, *) 'INVRT1=', INVRT1
WRITE (*1*) 'INVRT2=', INVRT2
WRITE(*,*) 'INVRT3=' ,INVRT3
WRITE (*, *) 'INVRT4=' ,INVRT4
WRITE(*,*) 'FLAGVT=' ,FLAGVT

C
C CALCULATE THE DOT PRODUCT TO DETERMINE ANGLES
C
C IF (ICL412 .EQ. 1) THEN
C THETA1=PI
C GOTO 22
C END IF

T1=(XN4-XN1)* (XN2-XN1)+(YN4-YN1)* (YN2-YN1)
THETA1=ACOS (T1/(EDGED*EDGEA))
IF (INVRT1 .EQ. 1) THEN

THETA1=2.0*PI -THETAl
END IF
T2=(XN1-XN2)*(XN3-XN2)+(YN1-YN2)*(YN3-YN2)
THETA2=ACOS (T2/ (EDGEA*EDGEB))
IF (INVRT2 .EQ. 1) THEN

THETA2=2. 0*PI -THETA2
END IF
T3=(XN2-XN3) *(XN4-XN3)+(YN2-YN3)*(YN4-YN3)
THETA3=ACOS (T3/(EDGEB*EDGEC))
IF (INVRT3 .EQ. 1) THEN

THETA3=2. Q*PI -THETA3
END IF
T4=(XN3-XN4)*(XN1-XN4)+(YN3-YN4) *(yN1-YN4)
THETA4=ACOS (T4/ (EDGEC*EDGED))
IF (INVRT4 .EQ. 1) THEN

THETA4=2. 0*PI -THETA4
END IF
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C1
C CONVERT FROM RADIANS TO DEGREES
C

WT1=THETA1*180.0/PII
WT2=THETA2*180. 0/PI
WT3=THETA3*180.0/PI

WT4=THETA4*180 .0/PT

C SET SKEW ANGLE FLAGS FOR BOTH UPPER AND LOWER
VALUES

CI
C
C LOWER LIMIT

SKL=WT1
IF (WT2 .LT. SKL) THEN

SKL=WT2

END IFI
IF (WT3 .LT. SKL) THEN

SKL=WT3

END IFI
IF (WT4 .LT. SKL) THEN

S KL=WT4
END IF

FLAGSL=O
IF (SKL .LE. SKLLIM) THEN

FLAGSL=1
ELSEI

END IF
C

C WRITE OUT SMALLEST SKEW ANGLE AND ITS FLAG VALUE
C

WRITE(*,*) 'SKL=',SKL
WRITE(*,*) 'FLAGSL=' ,FLAGSLI

C
C UPPER LIMIT

SKU=WT1
IF (WT2 .GT. SKU) THEN

SKU=WT2
END IFI
IF (WT3 .GT. SKU) THEN

SKU=WT3

END IFI
IF (WT4 .GT. SKU) THEN

SKU=WT4
END IF

FLAGSU=O
IF (SKU .GE. SKULIM) THEN

FLAGSU=1
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I ELSE
FLAG SU= 0

END IFI FLAGSK= 0
IF ((FLAGSL .EQ. 1) .OR. (FLAGSU .EQ. 1)) THEN

FLAGSK=1

I END IF

C WRITE OUT LARGEST SKEW ANGLE AND SK FLAG VALUE
C

WRITE(*,*) 'SKU=',SKU
WRITE(*,*) 'FLAGSKU=' ,FLAGSKU

WRITE(* , *) 'FLAGSK=' ,FLAGSK
C

C WRITE OUT ELEMENT ANGLES
C

WRITE(*,*) 'THETA1=',WT1I WRITE(*,*) 'THETA2=',WT2
WRITE(*,*) 'THETA3=',WT3
WRITE(*,*) 'THETA4=',WT4
WRITE(*,*) 'FLAGSK=' ,FLAGSK

C WRITE OUT ALL FLAGS AND VALUES TO ARRAYS

*17 CONTINUE
ELMFLAG(J, 1)=ELMID
ELMFLAG (J, 2) =FLAGARI ELMFLAG (J, 3) =FLAGTR
ELMFLAG (J, 4) =FLAGSK
ELMFLAG (J, 5) -FLAGCN

C ELMFLAG(J, 6)=FLAGCL

ELMFLAG (J, 6)=FLAGVT
VALAR(J)=AR
VALTR(J)=TRI VALSKL (J) =SKL
VALSKU (J) =SKU

14 CONTINUEIC WRITE OUT FLAG AND VALUE ARRAYS TO A FILE
OPEN(555,FILE='FLAGS.TXT',STATUS='NEW')
WRITE(555,*) ' ELMID AR TR SKL,

SU+FA. FTR FSK FCN FVT'
DO 15 J=1,IELM

WRITE(555,99) ELMFLAG(J,1),VALAR(J),I +VALTR(J) ,VALSKL(J),
+VALSKU(J) ,ELMFLAG(J,2) ,ELMFLAG(J,3) ,ELMFLAG(J,4),

+ELMFLAG(J, 5) ,ELMFLAG(J, 6)
15 CONTINUEI ~~99 FORMAT(1X, 17, F9.4, F8 .4, FlO.4, FlO .4,14,14,14,14,14)

CLOSE(555, STATUS=' KEEP')3 END
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Element and node input files follow.

Element input file. I

Element number and associated node numbers
1 1 2 102 101
2 2 3 103 102
3 3 4 104 103
4 4 5 105 104

5 5 6 106 105
6 6 7 107 106
7 7 8 108 107
8 8 9 109 108
9 9 10 110 109

10 10 11 i11 110
11 11 12 112 ill
12 12 13 113 112

101 101 102 202 201
102 102 103 203 202 l
103 103 104 204 203

104 104 105 205 204
105 105 106 206 205
106 106 107 207 206
107 107 108 208 207
108 108 109 209 208
109 109 110 210 209 m
110 110 11 211 210
11 i1 112 212 211
112 112 113 213 212
201 201 202 302 301
202 202 203 303 302
203 203 204 304 303
204 204 205 305 304
205 205 206 306 305
206 206 207 307 306
207 207 208 308 307 I
208 208 209 309 308
209 209 210 310 309
210 210 211 311 310
211 211 212 312 311
212 212 213 313 312
301 301 302 402 401
302 302 303 403 402 I
303 303 304 404 403
304 304 305 405 404
305 305 306 406 405 3
306 306 307 407 406
307 307 308 408 407
308 308 309 409 408 3
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l

1 309 309 310 410 409
310 310 311 411 410
311 311 312 412 411
312 312 313 413 412
401 401 402 502 501
402 402 403 503 502
403 403 404 504 503
404 404 405 505 504
405 405 406 506 505
406 406 407 507 506
407 407 408 508 507
408 408 409 509 508
409 409 410 510 509
410 410 411 511 510
411 411 412 512 511
412 412 413 513 512
501 501 502 602 601
502 502 503 603 602
503 503 504 604 603

504 504 505 605 604
505 505 506 606 605

506 506 507 607 606
507 507 508 608 607
508 508 509 609 608
509 509 510 610 609
510 510 511 611 610
511 511 512 612 611
512 512 513 613 612
601 601 602 702 701
602 602 603 703 702
603 603 604 704 703
604 604 605 705 704
605 605 606 706 705
606 606 607 707 706
607 607 608 708 707
608 608 609 709 708
609 609 610 710 709
610 610 611 711 710
611 611 612 712 711
612 612 613 713 712
701 701 702 802 801
702 702 703 803 802
703 703 704 804 803
704 704 705 805 804
705 705 706 806 805
706 706 707 807 806707 707 708 808 807

708 708 709 809 808

709 709 710 810 809
710 710 711 811 8101 711 711 712 812 811
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712 712 713 813 812
801 801 802 902 901
802 802 803 903 902
803 803 804 904 903
804 804 805 905 904
805 805 806 906 905
806 806 807 907 906
807 807 808 908 907
808 808 809 909 908
809 809 810 910 909
810 810 811 911 910
811 811 812 912 911
812 812 813 913 912
901 901 902 1002 1001
902 902 903 1003 1002
903 903 904 1004 1003
904 904 905 1005 1004
905 905 906 1006 1005
906 906 907 1007 1006
907 907 908 1008 1007
908 908 909 1009 1008

909 909 910 1010 1009
910 910 911 1011 1010
911 911 912 1012 1011
912 912 913 1013 1012

1001 1001 1002 1102 1101
1002 1002 1003 1103 1102
1003 1003 1004 1104 1103 I
1004 1004 1005 1105 1104
1005 1005 1006 1106 1105
1006 1006 1007 1107 1106
1007 1007 1008 1108 1107
1008 1008 1009 1109 1108

1009 1009 1010 1110 1109
1010 1010 1011 i111 1110 I
1011 1011 1012 1112 i111
1012 1012 1013 1113 1112
1101 1101 1102 1202 1201
1102 1102 1103 1203 1202
1103 1103 1104 1204 1203
1104 1104 1105 1205 1204
1105 1105 1106 1206 1205 I
1106 1106 1107 1207 1206
1107 1107 1108 1208 1207
1108 1108 1109 1209 1208
1109 1109 1110 1210 1209
1110 1110 i111 1211 1210
i111 i111 1112 1212 1211
1112 1112 1113 1213 1212

I
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Node input file.

Node number X coord. Y coord.
1 0. 0.
2 8.33333E-04 0.
3 1.66667E-03 0.
4 2.50000E-03 0.
5 3.33333E-03 0.
6 4.16667E-03 0.
7 5.OOOOOE-03 0.
8 5.83333E-03 0.
9 6.66667E-03 0.

10 7.50000E-03 0.
11 8.33333E-03 0.
12 9.16667E-03 0.
13 1.OOOOOE-02 0.

101 0. 1.25000E-03
102 8.33333E-04 1.25000E-03
103 1.66667E-03 1.25000E-03
104 2.50000E-03 1.25000E-03
105 3.33333E-03 1.25000E-03
106 4.16667E-03 1.25000E-03
107 5.OOOOOE-03 1.25000E-03
108 5.83333E-03 1.25000E-03
109 6.66667E-03 1.25000E-03
110 7.50000E-03 1.25000E-03
ill 8.33333E-03 1.25000E-03
112 9.16667E-03 l.25000E-03
113 1.OOOOOE-02 1.25000E-03
201 0. 2.50000E-03
202 8.33333E-04 2.50000E-03
203 1.66667E-03 2.50000E-03
204 2.50000E-03 2.50000E-03
205 3.33333E-03 2.50000E-03
206 4.16667E-03 2.50000E-03
207 5.OOOOOE-03 2.50000E-03
208 5.83333E-03 2.50000E-03
209 6.66667E-03 2.50000E-03
210 7.50000E-03 2.50000E-03
211 8.33333E-03 2.50000E-03
212 9.16667E-03 2.50000E-03
213 1.OOOOOE-02 2.50000E-03
301 0. 3.75000E-03
302 8.33333E-04 3.75000E-03
303 1.66667E-03 3.75000E-03
304 2.50000E-03 3.75000E-03
305 3.33333E-03 3.75000E-03
306 4-16667E-03 3.75000E-03
307 5.OOOOOE-03 3.75000E-03
308 5.83333E-03 3.75000E-03
309 6.66667E-03 3.75000E-03
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310 7.50000E-03 3.75000E-033
311 8.33333E-03 3.75000E-03
312 9.16667E-03 3.75000E-03
313 1.00000E-02 3.75000E-03
401 0. 5.00000E-03
402 8.33333E-04 5.00000E-03
403 1.66667E-03 5.00000E-03
404 2.50000E-03 5.00000E-03I
405 3.33333E-03 5.00000E-03
406 4.16667E-03 5.00000E-03

407 5.OOOOOE-03 5.00000E-03U
408 5.83333E-03 5.00000E-03
409 6.66667E-03 5.OOOOOE-03
410 7.5OOOOE-03 5.OOOOOE-03
411 8.33333E-03 5.OOOOOE-03I
412 9.16667E-03 5.OOOOOE-03
413 1.OOOOOE-02 5.OOOOOE-03
501 0. 6.25000E-03I
502 8.33333E-04 6.25000E-03
503 1.66667E-03 6.25000E-03
504 2.50000E-03 6.25000E-03
505 3.33333E-03 6.25000E-03
506 4.16667E-03 6.25000E-03
507 5.OOOOOE-03 6.25000E-03
508 5.83333E-03 6.25000E-03I
509 6.66667E-03 6.25000E-03
510 7.50000E-03 6.25000E-03

511 8.33333E-03 6.25000E-03I
512 9.16667E-03 6.25000E-03
513 1.OOOOOE-02 6.25000E-03
601 0. 7.SOOOOE-03
602 8.33333E-04 7.50000E-03
603 1.66667E-03 7.50000E-03
604 2.50000E-03 7.50000E-03
605 3.33333E-03 7.50000E-03I
606 4.16667E-03 7.50000E-03
607 5.OOOOOE-03 7.50000E-03
608 5.83333E-03 7.SOOOOE-03I
609 6.66667E-03 7.50000E-03
610 7.50000E-03 7.50000E-03
611 8.33333E-03 7.50000E-03
612 9.16667E-03 7.5OOOOE-03
613 1.OOOOOE-02 7.SOOOOE-03
701 0. 8.75000E-03

702 8.33333E-04 8.75000E-03I
703 1.66667E-03 8.75000E-03
704 2.50000E-03 8.75000E-03
705 3.33333E-03 8.75000E-03
706 4.16667E-03 8.75000E-03
707 5.OOOOOE-03 8.75000E-03
708 5.83333E-03 8.75000E-035
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709 6.66667E-03 8.75000E-03
710 7.50000E-03 8.75000E-03
711 8.33333E-03 8.75000E-03
712 9.16667E-03 8.75000E-03
713 1.OOOOOE-02 8.75000E-03
801 0. 1.00000E-02
802 8.33333E-04 1.00000E-02
803 1.66667E-03 1.00000E-02
804 2.50000E-03 1.00000E-02
805 3.33333E-03 1.OOOOOE-02
806 4.16667E-03 1.00000E-02
807 5.OOOOOE-03 1.OOOOOE-02
808 5.83333E-03 1.OOOOOE-02
809 6.66667E-03 1.OOOOOE-02
810 7.50000E-03 1.00000E-02
811 8.33333E-03 1.OOOOOE-02
812 9.16667E-03 1.OOOOOE-02
813 1.OOOOOE-02 1.OOOOOE-02
901 0. 1.12500E-02
902 8.33333E-04 1.12500E-02
903 1.66667E-03 1.12500E-02
904 2.50000E-03 1.12500E-02
905 3.33333E-03 1.12500E-02
906 4.16667E-03 1.12500E-02
907 5.OOOOOE-03 1.12500E-02
908 5.83333E-03 1.12500E-02
909 6.66667E-03 1.12500E-02
910 7.50000E-03 1.12500E-02
911 8.33333E-03 1.12500E-02
912 9.16667E-03 1.12500E-02
913 1.OOOOOE-02 1.12500E-02

1001 0. 1.25000E-02
1002 8.33333E-04 1.25000E-02
1003 1.66667E-03 1.25000E-02
1004 2.50000E-03 1.25000E-02
1005 3.33333E-03 1.25000E-02
1006 4.16667E-03 1.25000E-02
1007 5.OOOOOE-03 1.25000E-02
1008 5.83333E-03 1.25000E-02
1)09 6.66667E-03 1.25000E-02
1010 7.50000E-03 1.25000E-02
1011 8.33333E-03 1.25000E-02
1012 9.16667E-03 1.25000E-02
1013 1OOOOOE-02 1.25000E-02
1101 0. 1.37500E-02
1102 8.33333E-04 1.37500E-02
1103 1.66667E-03 1.37500E-02
1104 2.50000E-03 1.37500E-02
1105 3.33333E-03 1.37500E-02
1106 4.16667E-03 1.37500E-02
1107 5.OOOOOE-03 1.37500E-02
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1108 5.83333E-03 1.37500E-023
1109 6.66667E-03 1.37500E-02
1110 7.50000E-03 1.37500E-02
1111 8.33333E-03 1.37500E-02
1112 9.16667E-03 1.37500E-02
1113 1.00000E-02 1.37500E-02
1201 0. 1.50000E-02
1202 8.33333E-04 1.50000E-02U
1203 1.66667E-03 1.50000E-02
1204 2.50000E-03 1.50000E-02
1205 3.33333E-03 1.50000E-02I
1206 4.16667E-03 1.50000E-02
1207 5.OOOOOE-03 1.50000E-02
1208 5.83333E-03 1.50000E-02
1209 6.66667E-03 1.50000E-02
1210 7.50000E-03 1.50000E-02
1211 8.33333E-03 1.50000E-02
1212 9.16667E-03 1.50000E-02I
1213 1.OOOOOE-02 1..50000E-02
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APPENDIX B

RESULTS FROM THE UPSETTING BILLET PROBLEM
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I
I

RESULTS FROM THE UPSETTING BILLET PROBLEM i

The following figures and tables are results from i
the upsetting billet problem which simulates a metal 3
forming process. Contour plots of equivalent plastic

strain, Mises stress, and strain energy density are shown 3
in Figure B.1 through Figure B.27. Each figure

corresponds to either equivalent plastic strain, Mises i
stress, or strain energy density for a particular

rezoning point or at the completion of the solution.

Cases of the completed solution for nonrezoning also 3
appear. Table listings of strain jump values at the

nodes of the elements flagged for rezoning and those 3
within twenty percent of being flagged are shown in Table

B.1 through Table B.9. i

i
I
i
I
I
I
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PEED
VAL UE

1 .2 DflE-07 5 .DO E-o1 9 .5DE-fl
2 -. ODE-O1 6 +1 DOE+flD 1D i1.90E.00
3 *4.DOE-01 7 .1.20EEflD 11 +2 DOE-00
4 -. ODE-Ol 8 +1 40E.00J

Figure B. 1. Contour plot of equivalent plastic strain
for the point of termination for the nonrezoning case of
the upsetting billet
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MISES VALU
1 3DDE02 -9DOE08 7 1BDE09 0 -.70+0
2 + DD+DB 5 120E09 .2IDE09 1 +.DO+I
3 -SDDEDB 6 -1 0E+9 a 2 4E+0

Figre .2 Cotor pot f ise sres fo te pin
of erinaio fo te nnrzonngcas o th usetin
bill-I
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4 .2 A E4l 4 A- DEfS 7 12E0 1 1BE0

a 7 2DE0 7 6OEO 10.7 1 2OE0

3 4 O.0 5 *I OEO 9 .16E7D

Fiur .3 Cnou po o srinenry eniy7o
th pit f emiato fr h nnrznig ae f7h

upsetin bile
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Table B.1. Strain jump values for elements flagged for
rezoning and those within twenty percent for the
nonrezoning case of the upsetting billet problem

NODE SJP11 SJP22 SJP33 SJP12

403 0.1087 0.1531 4.4257E-02 0.3299I
404 5.8574E-02 8.8652E-02 6.1517E-02 7.0910E-02
405 6.3749E-02 0.1296 6.5147E-02 0.1592
406 6.1816E-02 7.4349E-02 6.3445E-02 2.3932E-02
407 4.1947E-02 9.3432E-02 5.9968E-02 0.10331
502 9.8379E-02 0.1628 6.4428E-02 0.7069
503 7.5396E-02 9.8475E-02 6.6235E-02 0.1989

504 0.1091 0.1887 7.9210E-02 0.2785
505 6.5466E-02 6.7889E-02 7.8712E-02 3.0310E-02
506 5.8595E-02 0.1330 7.4008E-02 0.1971
507 7.9917E-02 6.2654E-02 6.7713E-02 1.4708E-02I
508 6.7636E-02 9.6878E-02 6.2028E-02 0.1224
602 1.4998E-02 7.6449E-02 8.4243E-02 0.5125

603 0.1769 0.2717 9.4519E-02 0.4704I
604 4.6682E-02 6.7258E-02 0.1010 6.9186E~-02
605 0.1142 0.2098 9.5356E-02 0.3247
606 6.9404E-02 3.0024E-02 8.7081E-02 5.8353E-02

607 6.9527E-02 0.1474 7.7930E-02 0.2598
608 0.1141 8.0524E-02 6.9220E-02 1.8699E-02
609 9.8652E-02 0.1061 6.2676E-02 0.1221
610 0.1543 0.1471 5.8681E-02 2.2803E-02U
702 0.1164 0.2322 0.1168 0.8052
703 2.2474E-02 0.1492 0.1262 0.1489
704 0.1455 0.2698 0.1239 0.3676

705 7.0958E-02 8.1928E-02 0.1134 0.1275
706 0.1386 0.2404 0.1017 0.3929
707 0.1024 1.8540E-02 9.0527E-02 8.5676E-02
708 0.1224 0.2015 7.9614E-02 0.3754I
709 0.1513 0.1016 6.9825E-02 2.6138E-02
710 0.1449 0.1410 6.2866E-02 0.1373
711 0.2361 0.2254 6.1734E-02 8.8554E-023
802 4.7234E-02 0.1959 0.1487 0.4192
803 0.1417 0.2933 0.1512 0.3138
804 4.8668E-02 0.1781 0.1399 6.3207E-02

805 0.1347 0.2617 0.1319 0.3168
806 5.0013E-02 0.1436 0.1234 0.1216
807 0.1729 0.2761 0.1142 0.4575
808 0.1211 6.0002E-02 0.1032 0.1089
809 0.2065 0.2872 9.2600E-02 0.5475U
810 0.1944 0.1269 7.9920E-02 4.2201E-02
811 0.2523 0.2738 6.6467E-02 0.1085

903 7.2730E-02 0.1998 0.1501 5.4851E-02

904 0.1133 0.2501 0.1366 0.1346
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* Table B.1 (continued)

905 9.5306E-02 0.2319 0.1375 1.8975E-02

906 0.1478 0.2643 0.1374 0.2266
907 7.9256E-02 0.2146 0.1361 7.7464E-02
908 0.2180 0.3207 0.1312 0.5060
909 0.1051 0.1236 0.1246 0.1503
910 0.3057 0.3881 0.1162 0.8202
911 0.3511 0.2732 9.3264E-02 0.2217
912 0.3918 0.4573 9.6702E-02 0.6479
1005 0.1100 0.2166 0.1074 0.1704
1006 0.1225 0.2357 0.1138 0.1278
1007 0.1665 0.2760 0.1208 0.1534
1008 0.1624 0.2897 0.1279 5.8521E-02
1009 0.2738 0.3716 0.1323 0.4567
1010 0.1253 0.2647 0.1396 0.1887
1 1011 0.5474 0.5729 0.1372 1.177
1012 0.5947 0.5150 0.1085 1.244
1013 0.2137 0.2996 8.1838E-02 4.3719E-02
1107 9.6497E-02 0.1640 6.7855E-02 0.2243
1108 0.1457 0.2227 7.8364E-02 0.2760
1109 0.2033 0.2934 9.0338E-02 0.3093
1110 0.3120 0.3996 0.1060 0.2537
1111 0.3774 0.5057 0.1280 0.1019
1112 0.8666 0.8729 0.1141 1.814
1113 0.3454 0.2553 0.1020 4.1789E-02
1210 4.5024E-03 8.0536E-03 8.1715E-03 1.7290E-03
1211 3.3283E-03 1.3659E-03 1.3983E-02 5.2741E-03
1212 2.6655E-02 5.8601E-04 1.0573E-02 6.0745E-02

MAXIMUM 0.8666 0.8729 0.1588 1.814

3 NODE 1112 1112 902 1112

MINIMUM 0. 0. 0. 0.

NODE 1 1 1

U
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I I

PEEI
VALU

1 -5 OOE 08 5 -2.DE- 1 9 4 O E-0
2 +5 OOE 02 6 +2,0E-0 10 -4.5 E-0
3 +1 OOE 01 7 -3.OE-0 11 +5.O E-I
4 +1 !S~j -01 +3 0E-0

Figre . . Cntur lo ofequvaentplsti srai a
thepoit lagedforth fist eznin o th usetin
billet
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IIE
VAU

1I2OE0 BOED 16E0
2I2OEO 1OO +9 1 18E0
3I4OEO 120 9 1 2OE0
+IOEO IAE0

FiueB5Iotu lto ie tesa h on
flgeIo h is eoin fteustigble
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E I

SENEI
VALUI

1 +6DOE-1 5 2 AO -06 A BE I
2 +6. O E-0 6 + DO -06 1.0 5 A E-0
3 4120E 06 7 +3,0E+0 11 +6 O EI

+ 1 .BOE 6 B A , 0E+0
FigreB-6 Cntor lotofstrinenegydenit atth
poit faggd fr he irs reonig f te usetin
billet

SENE244



Table B.2. Strain jump values for elements flagged for
rezoning and those within twenty percent for the first
rezoning case of the upsetting billet problem

NODE SJP11 SJP22 SJP33 SJP12

1111 0.1138 0.1550 4.2156E-02 0.1818
1112 0.1627 0.2118 5.2170E-02 0.4883
1113 0.1522 0.1203 3.8374E-02 0.2370
1211 1.9771E-03 1.9998E-03 6.3229E-03 4.2294E-04
1212 7.1671E-03 9.9516E-03 1.3796E-02 9.1070E-03

MAXIMUM 0.2349 0.2118 5.2170E-02 0.4883

NODE 1012 1112 1112 1112

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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.... .....I

PEEI
VALUE

1 -6 OOE 08 5 *2 DE-1 9 4 GE-0
2 *6OOE02 6 3,DE-0 10 5 4E-I
3 -120E 01 7 +3.DE-0 11 -6.O E-I
4 *1BOE- 1 8 4 2 E-0

Figre . . Cntur lo ofequvaentplsti srai a
the oin flagedforthe ecod rzonig o th
upseting ille
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M I SES

VALUE

1 -5 ODE-08 5 .8 SOE.08 9 -1 22E-09

2 .5 90E-08 6 .9 50E-08 10 .1 31E-09

3 .6 BOE-E08 7 .1 DAE-09 11 -1 40E.09

4 -7.70E.08 8 -1 13E-09

Figure B. 8. Contour plot of Mises stress at the point
flagged for the second rezoning of the upsetting billet
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F --- 4 J.I
3I

SENEI
VA~uI

1 -7 DOE 01 5 +2 OE+6 9 5 6 E+0
2 +7OOE 05 6 +3 0E+0 10 +6 3 E+0
3 +1AOE 06 7 -A.0E-0 11 +7 D E+I

4 +2 lOE-0 5 2BE06 8 .5 90E.06

Figure B. 9. Contour plot of strain energy density at the
point flagged for the second rezoning of the upsetting
billet
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Table B.3. Strain jump values for elements flagged for
rezoning and those within twenty percent for the second
rezoning case of the upsetting billet problem

NODE SJp11 SJP22 SJP33 SJP12

1112 5.2858E-02 4.5554E-02 1.5595E-02 3.8581E-02
1113 3.4549E-02 2.9818E-02 9.1713E-03 0.1222
1114 0.1610 0.1529 1.1177E-02 0.2947
1213 0.1212 0.1274 7.8805E-03 0.4896
1312 5.2953E-02 6.1623E-02 9.4868E-03 6.5697E-02
1313 7.5287E-02 7.9892E-02 7.6651E-03 0.1871

MAXIMUM 0.1610 0.1529 1.5595E-02 0.4896

NODE 1114 1114 1112 1213

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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------- ----

'15,

10 JI

P E E Q A L I
1 -9 DOE 08 5 -3.DE- 1 9 7 2 E-0
2 -9 DDE 02 6 -4 0E-0 10 -8 lE-0
3 -I BDE 01 7 5 0E-0 11 -9.O E-I
,4 -70E 01 B .5,3 E-0

Figre .1. Cntur lotofequvaentplati stai
at he oin flgge fo te tirdreznin ofth
upseting ille

PE250



MI SES

VALUE

1 +5 DDE+08 5 +9 A0E.08 9 -1.38E+09

2 -6 IOE.D8 6 +1 05E+09 10 -. 49E+09

3 +7,20E-08 7 *1.16E.09 11 .1 SOE.09

4 .B 30E.08 8 +1 27E+09

Figure B.11. Contour plot of Mises stress at the point
flagged for the third rezoning of the upsetting billet
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- - - - -- -I

3I

5 S

7I
7I
7I
7I
7I

SNRVALUE

1 .9 OOE-01 5 -3.60E.06 9 .20E.06

2 .9 OCE-105 6 -4.50E-06 10 .8 IDE+06

3 +1 BOE.06 7 +5 A0E.06 11 +9 OOE-06

-4 +2 70E+06 8 +6 .30E+06I

Figure B.12. Contour plot of strain energy density at
the point flagged for the third rezoning of the upsetting
billet
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Table B.4. Strain jump values for elements flagged for
rezoning and those within twenty percent for the third
rezoning case of the upsetting billet problem

NODE SJP11 SJP22 SJP33 SJP12

909 3.0896E-02 4.8518E-02 2.7023E-02 G.1060
910 2.9980E-02 3.1537E-02 2.3364E-02 7.6816E-02
1009 3.6669E-02 6.3821E-02 2.6996E-02 2.6848E-02
1010 6.0558E-02 8.1115E-02 2.8738E-02 0.1477
1011 2.3587E-02 3.9062E-02 2.6058E-02 9.3531E-02
1012 1.4845E-02 2.5708E-02 2.2944E-02 0.1677
1013 0.1385 0.1254 1.7940E-02 0.1671
1014 0.1738 0.1726 1.7213E-02 0.1713
1110 5.1718E-02 7.1925E-02 1.9937E-02 7.4427E-02
1111 0.1163 0.1268 2.2439E-02 0.1905
1112 9.9883E-02 0.1245 2.4860E-02 3.3268E-02
1113 1.6315E-02 6.1318E-03 2.2087E-02 5.2850E-02
1114 0.3960 0.3977 2.4670E-02 0.3526
1213 7.7226E-03 1.8988E-02 8.4325E-03 0.8184
1310 2.4767E-02 3.2410E-02 7.4690E-03 5.4347E-02
1311 4.5119E-02 5.9032E-02 1.1859E-02 0.1266
1312 0.1012 0.1184 1.6394E-02 7.4013E-02
1313 0.1419 0.1562 1.4384E-02 0.5832

MAXIMUM 0.3960 0.3977 3.3369E-02 0.8184

NODE 1114 1114 802 1213

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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I I

F F1 ID 7 A -0 -1 7 -.O -1 1 99E 0
2 .lO -01 5 + 40 -01 8 + .70 -01 11 I.IE+I
3 .2 2CE- 1 6 5.50 -01 8.8 E-0

Figre .13 Cotou plt f euivlen plsti stai
at he oin flgge fo th forthreznin ofth
upseting ille
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NAI SES
VALUE

I 2 DOE 02 4 . OOE-08 7 .1 20E-09 10 .1 SE0

2 .2 ODE-08 5 -B8 OOE-.08 8 .1 qOE.09 11 .2 OOE-09
3 .4 OOJE-08 6 D OE.09 9 .1 60E.09

Figure B.14. Contour plot of Mises stress at the point
flagged for the fourth rezoning of the upsetting billet
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- - -- -- - - -I
- - -- -- - - -I
. . . . . ..I
. . . . . ..I

1I

5I

6 I
5

5I

VALUE

SE6E OEn-1OE0 4 .3 70E-06E 7 +6 40E-06 10 +9 1OE.0

2 .1 90E-06 5 +4 60E-06 8 .7 30E-06 11 .1 UOE-O

3 +2 B0E.05 6 +5 50E-06 9 .8 20E-06

Figure B.15. Contour plot of strain energy density at
the point flagged for the fourth rezoning of the
upsetting billet
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Table B.5. Strain jump values for elements flagged for
rezoning and those within twenty percent for the fourth
rezoning case of the upsetting billet problem

NODE SJPll SJP22 SJP33 SJP12

913 9.2079E-02 8.4853E-02 1.2486E-02 0.1557
914 8.9564E-03 1.5606E-02 4.7971E-03 2.2316E-02
1012 5.1973E-02 4.1305E-02 1.9670E-02 0.1088
1013 0.2905 0.3060 1.7700E-02 0.5175
1014 7.6891E-02 7.0090E-02 1.2408E-02 8.3253E-02
1112 7.6269E-02 7.6880E-02 1.4097E-02 0.2230
1113 7.9556E-02 6.9390E-02 1.2812E-02 8.7032E-02

MAXIMUM 0.2905 0.3060 2.2617E-02 0.5175

NODE 1013 1013 702 1013

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1

I2



b b -T:)I
1 = 7 I
PEED

VALUE
1 -2 tJOE-07 4 .5 ODE-01 7 .1 20E+00 10 .1 80E.OO

2 +2 OOE-01 5 -8 ODE-01 a +1 40E+00 11 +2 OOE.00I
3 +4 ODE-01 6 .1 002.00 9 .1 BDE.DO

Figure B.16. Contour plot of equivalent plastic strainI

at the point flagged for the fifth rezoning of the

upsetting billetI
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MiSES

VAL UE

1 .2 DOE-02 4 +6 OOE-08 7 +1 20E+09 10 -1 8OE O9

2 .2 OOE+OB 5 +8 OOE-08 8 -1 AOE-09 11 +2 DOE-09

3 .4 OOE+OB 5 .1 ODE 09 9 .1 60E 09

Figure B.17. Contour plot of Mises stress at the point
flagged for the fifth rezoning of the upsetting billet
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. . . . .. . . .I

. . .. . ....I

7I
SI
6I
bI

SE NE P
VALUE

1 .1 ODE-06 4 .4 30E.05 7 +7 SDE+06 10 .1 09E.07

2 +2 1DE-05 5 -5 40E.06 B +8 7DE-06 11 .1 2DE-07U
3 .3 2CE-06 6 .6 50E+06 9 .9 BOE-06

Figure B.18. Contour plot of strain energy density at
the point flagged for the fifth rezoning of the upsetting
billet
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Table B.6. Strain jump values for elements flagged for
rezoning and those within twenty percent for the fifth
rezoning case of the upsetting billet problem

NODE SJP11 SJP22 SJP33 SJP12

913 0.1489 0.1523 9.6085E-03 0.1583
914 6.7766E-02 6.2280E-02 1.1147E-02 1.7455E-02
1011 3.9004E-02 4.4607E-02 2.2758E-02 0.2119
1012 2.6156E-02 3.5150E-02 1.1415E-02 7.7961E-02
1013 0.2906 0.2924 1.3586E-02 0.1430
1014 7.7222E-04 1.2192E-02 1.2571E-02 2.1909E-02
1111 6.0918E-02 5.5426E-02 1.7504E-02 0.1486
1112 4.8595E-02 7.1792E-02 2.9831E-02 0.1408
1113 0.1955 0.1923 1.2794E-02 0.1171
1212 0.2285 0.2196 8.9293E-03 5.6408E-02
1213 0.1089 9.9708E-02 4.7829E-03 0.1312

MAXIMUM 0.2906 0.2924 2.9831E-02 0.2119

NODE 1013 1013 1112 1011

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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PEED

VAL UI
1 .2 OOE 07 4 -6 OE- 1 7 1 2 E.0 10 1 B E-0
2 2ODE01 5 -8 DE-1 8 1 4E.0 11 2 OEI
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K41 SES
VALUE

i -2.012E-O2 4 .6 OOE-08 7 .120E-09 0 .1 BOE.fJ9

2 .2 OOE.O8 5 -8 DlfE-D8 8 .1 4DE-09 11 .2 DOfE.09

3 .4 DOE-08 6 .1 OOE.09

9 .1 60E-09

Figure B.20. Contour plot of Mises stress at the point
flagged for the sixth rezoning of the upsetting billet
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SENEI
VAL UI
1 -1DDE06 4 .3 0E46 7 5 AE.0 10 9 IE.I
2 -19DE05 5 +4 0E-6 a 7 3E+0 11 1 OEI
3 2 DE+0 6 -SOE06 9 -8 2E-0
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Table B.7. Strain jump values for elements flagged for
rezoning and those within twenty percent for the sixth
rezoning case of the upsetting billet problem

NODE SJPil SJP22 SJP33 SJP12

1014 0.1189 0.1077 2.0098E-02 0.2486
1015 0.1581 0.1576 1.6684E-02 6.8212E-02
1016 9.1012E-02 8.5329E-02 1.3142E-02 0.1261
1114 8.5451E-02 9.0229E-02 2.3210E-02 0.3478
1115 0.3748 0.3773 2.0754E-02 0.7187
1116 6.0648E-03 9.7374E-03 1.6202E-02 4.5026E-02

MAXIMUM 0.3748 0.3773 3.8825E-02 0.7187

NODE 1115 1115 1113 1115

MINIMUM 0. 0. 0. 0.

NODE 11 1 1
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VALUE
2 DE-0 A 5 OE-0 7 -1 0E 0 1 -BO-0

2 :2DOE- 0 5 .OO -01 8 ,40-00 11 2 OE-I
3 .4 OOE 01 6 -1,OE-0 9 1 B E-0
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M I SES

VAL LJE

1 .2 ODE,02 4 *S.OOE-08 7 .1 20E.09 10 - 1.80E.09

2 .2 DOE-00 5 -. DDEO. a .1 AOE.09 11 .2 ODE-09
3 *4.DOE.08 6 .1 DOE+09 9 .1 60E.f09

Figure B.23. Contour plot of Mises stress at the point
flagged for the seventh rezoning of the upsetting billet
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I 1 -1 J J .1
5I
4I

9I
9I

SENEI

VALUE

1 1 OE-06 4 -A ODE-05 7 .7 OOE.06 1 I D . OE.07

-2 ODE-06 5 .5.OOE-OS a .8 OE-06 1 . IOE-07I

3 .3 OOE.065 -b.ODE-OS 9 .0 OOE-OS

Figure B.24. Contour plot of strain energy density at
the point flagged for the seventh rezoning of the

upsetting billetI
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Table B.8. Strain jump values for elements flagged for
rezoning and those within twenty percent for the seventh
rezoning case of the upsetting billet problem

NODE SJP11 SJP22 SJP33 SJP12

1014 7.9855E-02 8.5844E-02 1.0278E-02 0.1695
1015 0.1980 0.2064 1.1294E-02 0.1466
1016 9.1876E-02 8.8563E-02 8.2710E-03 6.1957E-02
1114 8.7967E-02 0.1014 1.3224E-02 0.1576
1115 0 2143 0.2102 9.9396E-03 0.5591
1116 5.2054E-02 5.6566E-02 8.0256E-03 0.2608
1214 1.3534E-02 7.6348E-03 1.6442E-03 1.9202E-02

MAXIMUM 0.2903 0.2870 1.7889E-02 0.5591

NODE 1212 1212 1113 1115

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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PEEI

VALUE
1 . DO -07 4 + .DD -01 7 -.20 +00 10 1 BE+I
2 + 00 -01 5 BOGE01 -140E00 1 +, DE+I
3 +4DDE-i 6 I.DE-00-I.SE-I
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M I SES

VAL LJE
1 -2 , OE-02 A4 -*6OOE-8 7 +1.2DE.09 10 -1 BOE-09
2 +2 DOE.08 5 .8 DOE.08 ai -1.40E+09 11 . OE0
3 .4.DE.08 S .. O E.09 9 -I50DE-D9

Figure B.26. Contour plot of Mises stress at the
completion of the solution after seven rezonings of the
upsetting billet
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4 A A

7 7 I
7I
7I

4I
SENEP VALU
1 * DO.00 4 +. DE*0 7 -1 0E+7 I -BO+I

I *2.OOEEt30 4 *.1.0EE.0 7 9 .1.60E+0~7 1 IBE0

Figure B.27. Contour plot of strain energy density at
the completion of the solution after seven rezonings of

the upsetting billetI
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Table B.9. Strain jump values for elements flagged for
rezoning and those within twenty percent for the
completed solution of the upsetting billet problem

NODE SPl SJP22 SJP33 SJP12

915 4.8898E-02 5.1015E-02 6.9223E-03 4.7717E-02
916 6.3049E-03 2.4619E-03 2.3446E-03 3.0589E-02
1014 0.1274 0.1312 7.9071E-03 4.1842E-02
1015 0.1165 0.1237 1.3931E-02 0.2146
1016 0.1386 0.1358 1.0510E-02 5.8625E-02
1114 4.9033E-02 7.0610E-02 2.4980E-02 0.3903
1115 0.1691 0.1724 1.1551E-02 0.6818
1116 2.5537E-02 3.5521E-02 9.2248E-03 0.1033
1214 2.4500E-02 3.4480E-02 3.4945E-03 0.1433

MAXIMUM 0.2281 0.2300 2.4980E-02 0.6818

NODE 1212 1212 1114 1115

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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RESULTS FROM THE IMPACTING CYLINDRICAL ROD PROBLEM

The following figures and tables are results from

the impacting cylindrical rod problem which simulates a

dynamic impact process. Contour plots of equivalent

plastic strain, Mises stress, and strain energy density

are shown in Figure C.1 through Figure C.12. Each figure

corresponds to either equivalent plastic strain, Mises

stress, or strain energy density for a particular

rezoning point or at the completion of the solution.

Cases of the completed solution for nonrezoning also

appear. Table listings of strain jump values at the

nodes of the elements flagged for rezoning and those

within twenty percent of being flagged are shown in Table

C.1 through Table C.4.
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5U

VALUE

VALU0 E - I
6 + I OOE-07

7 + I 20E+00

8 +1 .40E+00

9 +1I 60E+~00

10 + 1.BOE+003
1 1 +2 OOE-.00

Figure C. 1. Contour plot of equivalent plastic strain
for the point of completion for the nonrezoning case of
the impacting cylindrical rod
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M I SES

VAL UE

1 +2 0 0E +0 2

2 +2 00 E +0 8
3 +~4 0O0E + 0B

4 +6 OOE+08

5 +8 OOE±08

6 + 1 OOE±O8

7 + 1 20E+09
8 + 1 4 0E + 09

9 + 1 60E-t09
10 + 1 80E+09

1 1 +2. OOE+.09

Figure C.2. Contour plot of Mises stress for the point
of completion for the nonrezoning case of the impacting
cylindrical rod
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Table C.1. Strain jump values for elements flagged for
rezoning and those within twenty percent for the
completed nonrezoning case of the impacting cylindrical
rod

NODE SJP11 SJP22 SJP33 SJP12

2& 2.5507E-02 4.7303E-02 1.8708E-02 0.1392
6 0.3213 0.4112 8.8726E-02 0.4264
101 2.9879E-02 6.6594E-02 3.6296E-02 1.3415E-02
102 3.3352E-02 9.1864E-02 5.5004E-02 0.2864
103 9.6566E-02 0.1507 5.2830E-02 0.4500
104 0.1175 0.1652 8.8138E-02 0.4497
105 0.1457 0.2312 9.8841E-02 0.5306
106 0.4718 0.5725 0.1223 0.6818
107 9.8230E-02 6.4057E-02 3.3566E-02 2.4228E-02
201 2.6730E-02 8.3859E-02 5.6855E-02 2.1395E-02
202 6.2081E-02 0.1436 7.8446E-02 0.4335
203 7.8281E-02 0.1337 6.3455E-02 0.5741
204 0.1405 0.1897 9.9029E-02 0.6251
205 0.2533 0.3400 0.1199 0.5947
206 0.4863 0.5653 0.1460 0.3937
301 1.2002E-02 6.0539E-02 4.9432E-02 2.0820E-02
302 6.6697E-02 0.1428 7.3994E-02 0.5243
303 8.4992E-02 0.1476 6.2091E-02 0.4824
304 0.1615 0.2539 0.1058 0.6566
305 0.3105 0.4027 0.1363 0.5869
306 0.4177 0.5077 0.1595 0.2255
401 1.9428E-02 7.1236E-02 5.1939E-02 2.9777E-02
402 5.6577E-02 0.1313 7.2855E-02 0.5889
403 0.1028 0.1765 7.2447E-02 0.3807
404 0.1760 0.2952 0.1164 0.5686
405 0.3050 0.4122 0.1458 0.5115
406 0.3602 0.4851 0.1630 0.1776
501 1.7242E-02 8.4677E-02 6.7430E-02 4.0156E-02
502 6.3940E-02 0.1464 8.1222E-02 0.6638
503 0.1075 0.1996 9.1310E-02 0.3260
504 0.1746 0.3035 0.1269 0.4787
505 0.2927 0.4064 0.1488 0.4296
506 0.3494 0.4669 0.1602 0.1501
601 1.7888E-02 9.7985E-02 7.9704E-02 4.8226E-02
602 6.3400E-02 0.1507 8.8223E-02 0.6894
603 0.1234 0.2309 0.1072 0.3050
604 0.1516 0.2858 0.1323 0.3710
605 0.2544 0.4015 0.1464 0.3814
606 0.3384 0.4642 0.1529 0.1523
701 1.9216E-02 0.1098 8.9717E-02 4.7622E-02
702 6.6129E-02 0.1661 0.1004 0.6707
703 0.1162 0.2348 0.1181 0.2757
704 0.1329 0.2664 0.1313 0.2863
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Table C.1 (continued)

705 0.2217 0.3629 0.1386 0.3308
706 0.3155 0.4500 0.1408 0.1920
801 2.1724E-02 0.1205 9.7810E-02 4.7959E-02
802 7.2442E-02 0.1882 0.1145 0.5944
803 9.8116E-02 0.2216 0.1226 0.2310
804 0.1276 0.2547 0.1251 0.2522
805 0.1822 0.3111 0.1264 0.2928
806 0.2911 0.4203 0.1251 0.2558
902 7.1173E-02 0.1894 0.1185 0.4516
903 7.5991E-02 0.1934 0.1187 0.1890
904 0.1123 0.2265 0.1139 0.2323
905 0.1512 0.2649 0.1115 0.2835
906 0.2610 0.3727 0.1079 0.3188
1003 6.0160E-02 0.1672 0.1068 0.1726
1004 9.0081E-02 0.1893 9.8733E-02 0.1989
1005 0.1251 0.2219 9.4916E-02 0.2552

MAXIMUM 0.4863 0.5725 0.1630 0.6894 3
NODE 206 106 406 602 I

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1

]
I
I
I
I
I
I
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PEEQ

1 -1 1 1 /VALUE
S1 +9 DOE-OB

S2 +9 00E-02

3 +1 8 0E - 01

+2 7DE-01

5I+3 0 E-01

65 +4 5 DE-01

7 +5 40E-01

8 +6 30E-01

S9 +7 20E-01

10 +8 1DE-01

S11 +9 OE-01

I3

7 7 7 7 -- - -,

Figure C.4. Contour plot of equivalent plastic strain at
the point flagged for the first rezoning of the impacting
cylindrical rod
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SENER

VALUE

1 +6.DOE+ 0

2 +6 DO E+ 0

3 + 1 2 0E + 0

14 + 1 e0E +0

5 +2 . A0E + 0

6 +3 . 00E + 0

7 +3 .6 0E +0

8 +s4 2 0E + 0

9 +4 .B0 E +0

10 +5 .4 0E+ 0E
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Table C.2. Strain jump values for elements flagged for
rezoning and those within twenty percent for the first
rezoning case of the impacting cylindrical rod

NODE SPl SJP22 SJP33 SJP12

6 0.2212 0.2024 1.7697E-03 0.3480 1
105 6.4232E-02 9.4914E-02 5.1896E-02 0.1445
106 0.3901 0.4027 4.5110E-02 0.8806
107 9.0363E-02 5.9027E-02 4.3340E-02 7.6385E-02
204 4.8306E-02 0.1027 5.7107E-02 7.8633E-02
205 6.5519E-02 0.1356 6.4642E-02 0.2934
206 0.3790 0.4656 7.9181E-02 0.7632
304 5.0754E-02 6.0166E-02 5.8122E-02 7.0856E-02 I
305 0.1051 0.1425 6.8045E-02 0.2834
306 0.2780 0.3474 9.4280E-02 0.55093

MAXIMUM 0.3901 0.4656 9.4280E-02 0.8806

NODE 106 206 306 1063

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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RE EQ

VAL UE

1 +2 0O0E- 0 7

2 +~2 0 0E -0I

3 +4 0O0E - 0

,4 +6.0O0E- 0 1

5 +8 DO0E -O0l

5 + 1 005+00

7 + 1 205+00

8 + 1 4 0 E+ 00

9 + 1 60E+00

10 + 1 8 0 E+0 0

1 1 +2 0 05E+0 0

Figure C. 7. Contour plot of equivalent plastic strain at
the point flagged for the second rezoning of the
impacting cylindrical rod
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IUI
MISEI

VALUE
1 + 1ODE+I

2 +E I30E0

3 +2. 40E+09
14 3. 10E +0 9

5 +3 BOE-.09

6 +4. 50E+09
7 +5 20E+09
8 +5.90E+.09I
9 +6. 60E+~09

10 +.7 30E-.09

11 +8 OOE-.09

Figure C. 8. Contour plot of Mises stress at the point
flagged for the second rezoning of the impacting
cylindrical rod
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SE NE R

VALUE

+4 0 0 E + 0 1

2 -.A.OOE+07

3 iB OOE*07

+ 1 .20E+08

5 + 1 60E+08

6 -+2 OE+O8

'7 +2 40E+08

8 *2.BOE+OB

9 +3.20E+08

10 +3 60E+08

1 1 +4 OOE+08

Figure C.9. Contour plot of strain energy density at the
point flagged for the second rezoning of the upsetting
billet
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Table C.3. Strain jump values for elements flagged for
rezoning and those within twenty percent for the second
rezoning case of the impacting cylindrical rod

NODE SJP11 SJP22 SJP33 SJP12

2 5.5823E-02 1.5997E-02 3.3453E-03 0.36331
3 7.9210E-04 5.4914E-02 1.1299E-02 0.3154
6 1.1592E-02 7.0094E-02 7.8879E-02 0.2924
101 1.9331E-02 5.7910E-02 2.9670E-02 3.7229E-03
102 2.3204E-02 7.1929E-02 3.3019E-02 0.3038
103 3.7520E-02 7.2216E-02 1.5454E-02 0.1728
106 3.7426E-02 0.1401 9.2341E-02 5.6507E-02
107 9.2342E-03 1.1391E-02 3.1099E-03 5.7520E-02I
202 3.1547E-02 0.1149 3.8023E-02 0.3153
203 7.5559E-02 7.4757E-02 1.0333E-02 7.7200E-02
204 9.3118E-02 0.1605 5.4176E-02 0.2517
205 0.1446 0.2040 7.9322E-02 0.3232
206 4.6789E-02 0.1225 8.2520E-02 3.3073E-02
207 3.8681E-02 4.8100E-02 3.0123E-04 3.3664E-02
302 3.8710E-02 7.6095E-02 4.0009E-02 0.2683
303 0.1129 0.1556 1.5396E-02 0.2925
304 0.1346 0.1787 5.9624E-02 0.3417
305 0.2191 0.2680 8.3023E-02 0.3760I
306 9.6619E-02 0.1213 5.4215E-02 7.6008E-02
307 4.6520E-02 3.2786E-02 2.7202E-03 5.2185E-02

402 2.5853E-02 7.6841E-02 3.7215E-02 0.3943I
403 8.7416E-02 0.1272 2.7526E-02 0.2585
404 0.1441 0.1850 6.8534E-02 0.3708
501 1.4580E-02 1.2586E-02 2.4874E-02 7.7909E-03
502 3.0520E-02 4.7979E-02 4.2150E-02 0.4853I
503 9.2278E-02 0.1137 4.8560E-02 0.2307
504 0.1182 0.1607 7.4764E-02 0.2939
505 0.2747 0.3356 7.8749E-02 0.3286I
506 0.2054 0.2594 6.4636E-02 8.0140E-02
601 1.0855E-02 3.0279E-02 4.0706E-02 1.3000E-02
602 7.9114E-02 6.7801E-02 5.1736E-02 0.6113
603 7.4020E-02 0.1041 6.5140E-02 0.1943
604 9.5916E-02 0.1488 7.4891E-02 0.2396
605 0.2446 0.3002 7.6199E-02 0.2622
606 0.1756 0.2239 6.8882E-02 7.7787E-02I
701 1.1621E-02 7.4265E-04 4.7666E-02 3.0936E-03
702 7.1919E-02 0.1139 6.1070E-02 0.5768

703 6.0157E-02 0.1254 6.9376E-02 0.1884I
704 8.5890E-02 0.1652 7.1706E-02 0.2161
705 0.1802 0.2610 7.4544E-02 0.2046
706 0.1825 0.2258 7.1818E-02 0.1022
801 1.5626E-03 5.3748E-02 5.6808E-02 1.5988E-02I

802 4.7764E-02 0.1284 7.3029E-02 0.4493
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Table C.3 (continued)

803 6.0995E-02 0.1486 7.4382E-02 0.1963
804 8.3098E-02 0.1729 7.1692E-02 0.1891
805 0.1478 0.2397 7.2568E-02 0.2014
806 0.1835 0.2676 7.0025E-02 0.1882
902 3.7431E-02 0.1716 8.1625E-02 0.2628
903 4.5344E-02 0.1673 8.0038E-02 0.1446
904 6.3356E-02 0.1757 7.4401E-02 0.1490
905 8.3084E-02 0.1888 7.1815E-02 0.1793
906 0.1747 0.2639 6.5276E-02 0.2874

MAXIMUM 0.2747 0.3356 9.2341E-02 0.6113

NODE 505 505 106 602

MINIMUM 0. 0. 0. 0.

NODE 1 1 11
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VALUE
I * 2D 0 E- 0I
2 +2 0 E- 0I
3 +4 0 E- DI

+6 -D E- 0I

VALU0 E -3

9 60.OE+00

10 +1 IOOE+Qfl

1 1 +2 0O0E-+-0

Figure C.10. Contour plot of equivalent plastic strainI

at the completion of the solution after two rezonings of

the impacting cylindrical rodI
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MI SES

VALUE

1 *4.OOE+.O2

2 +4OE0

3 * 8 OOEs-O

A 4 1 20E+09

5 + 1 60E+09

S +2 OOE+09
7 +2 40E+.09

6 +2.80E+09
9 +3.20E+09

10 +3.60E+09

1 1 +.4 ODE+09

Figure Cli1. Contour plot of Mises stress at the
completion of the solution after two rezonings of the
impacting cylindrical rod
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I
Figure C.12. Contour plot of strain energy density at

the completion of the solution after two rezonings of the
impacting cylindrical rod
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Table C.4. Strain jump values for elements flagged for
rezoning and those within twenty percent for the
completed solution of the impacting cylindrical rod

NODE Spil SJP22 SJP33 SJP12

5 3.0970E-02 4.8883E-02 2.7757E-02 0.1427
6 2.2486E-02 6.7719E-02 4.8936E-02 0.2652
102 1.0133E-02 1.6223E-02 6.8135E-03 2.8663E-02
103 2.4442E-02 3.7355E-02 8.2218E-03 2.7147E-02
104 8.0744E-03 2.0737E-02 1.7001E-02 0.1268
105 3.9850E-02 5.3764E-02 2.8607E-02 0.1718
106 7.8939E-02 0.1382 6.1876E-02 0.1595
107 5.2838E-03 7.9323E-03 1.5723E-03 1.1892E-03
202 1.2683E-02 2.5585E-02 8.0428E-03 8.7744E-03
203 1.6682E-02 2.9340E-02 4.3758E-03 4.9669E-02
204 1.5986E-02 1.1313E-02 1.6881E-02 7.8854E-02
205 3.7385E-02 5.4799E-02 2.7739E-02 0.1980
206 5.2641E-02 8.8195E-02 4.3490E-02 7.1222E-02
207 1.7887E-03 3.5420E-03 9.8887E-04 2.0093E-02
302 1.3265E-02 2.8002E-02 7.2024E-03 5.4183E-02
303 2.3220E-02 2.9243E-02 4.3418E-03 4.2694E-02
304 1.6430E-02 3.8273E-02 2.1420E-02 4.3119E-02
305 2.9775E-02 5.0882E-02 2.8508E-02 0.1757
306 2.3179E-02 3.6604E-02 2.4433E-02 4.6458E-02
307 1.4008E-03 3.0415E-03 3.5799E-03 4.8215E-03
404 2.9442E-02 4.6636E-02 2.1253E-02 2.8440E-02
405 5.1527E-02 7.5627E-02 3.0958E-02 0.1656
406 1.5623E-02 1.1829E-02 1.2834E-02 3.3119E-02
407 9.7292E-04 2.0247E-03 4.2460E-03 7.3644E-03
504 3.6298E-02 5.2872E-02 1.9547E-02 3.4029E-02
505 8.4293E-02 0.1055 2.6760E-02 0.1821
506 2.2319E-02 2.0844E-02 1.3564E-02 2.1826E-02
507 8.6197E-03 1.0291E-02 3.8614E-03 6.2326E-03
704 2.2287E-02 3.2704E-02 2.0206E-02 4.6715E-02
705 5.5985E-02 8.0207E-02 2.8351E-02 9.3384E-02
804 1.7322E-02 1.9174E-02 2.0325E-02 3.0457E-02
805 5.2425E-02 6.6138E-02 2.8855E-02 7.5535E-02

MAXIMUM 8.4293E-02 0.1382 6.1876E-02 0.2652

NODE 505 106 106 6

MINIMUM 0. 0. 0. 0.

NODE 1 1 1 1
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